题目链接:https://codeforces.com/contest/1427/problem/C

题意

\(r\) 行与 \(r\) 列相交形成了 \(r \times r\) 个点,初始时刻记者位于左下角的 \((1,1)\) 处,接下来给出 \(n\) 个名人的出现时间和位置,出现时间严格递增,问记者最多可以拍到多少名人的照片。

题解

This is a classical dynamic-programming task with a twist.

这是一个有些变化的经典动态规划问题。

与最长上升子序列问题的不同之处的是,本题判断条件由 \(a_j > a_i\) 变为了 \(dis_{ij} \le t_j - t_i\) 以及利用 \(r\) 将 \(O_{(n^2)}\) 优化至了 \(O_{(nr)}\) 。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int r, n;
cin >> r >> n;
//如果 r == 1,此时只有 1 个点
if (r == 1) {
cout << n << "\n";
return 0;
}
vector<int> t(n + 1), x(n + 1), y(n + 1);
t[0] = 0, x[0] = 1, y[0] = 1;
for (int i = 1; i <= n; i++)
cin >> t[i] >> x[i] >> y[i];
vector<int> dp(n + 1, -1e9), mx_dp(n + 1);
dp[0] = 0; //初始时只有时刻 0 的 (1,1) 可达
for (int i = 1; i <= n; i++) {
//继承之前可达的 dp 状态
for (int j = max(i - 2 * (r - 1), 0); j < i; j++) {
if (abs(x[i] - x[j]) + abs(y[i] - y[j]) <= t[i] - t[j])
dp[i] = max(dp[i], dp[j] + 1);
}
//如果 i 大于等于最长路径,那么对于 dp[0] ~ dp[i - 2 * (r - 1)] 一定是可达的
if (i >= 2 * (r - 1)) dp[i] = max(dp[i], mx_dp[i - 2 * (r - 1)] + 1);
mx_dp[i] = max(dp[i], mx_dp[i - 1]);
}
cout << mx_dp[n] << "\n";
return 0;
}

Codeforces Global Round 11 C. The Hard Work of Paparazzi(dp/最长上升子序列)的更多相关文章

  1. Codeforces Global Round 11 C. The Hard Work of Paparazzi (DP)

    题意:有\(r\)X\(r\)的网格图,有\(n\)位名人,会在\(t_i\)时出现在\((x_i,y_i)\),如果过了\(t_i\)名人就会消失,从某一点走到另外一点需要花费的时间是它们之间的曼哈 ...

  2. Codeforces Global Round 11 个人题解(B题)

    Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...

  3. Codeforces Global Round 11【ABCD】

    比赛链接:https://codeforces.com/contest/1427 A. Avoiding Zero 题意 将 \(n\) 个数重新排列使得不存在为 \(0\) 的前缀和. 题解 计算正 ...

  4. Codeforces Global Round 11 A~D题解

    A.Avoiding Zero 题目链接:https://codeforces.ml/contest/1427 题目大意:给定一个数组a1,a2...,an,要求找出一个a重排后的数组b1,b2,.. ...

  5. Codeforces Global Round 11 D. Unshuffling a Deck(构造/相邻逆序对)

    题目链接:https://codeforces.com/contest/1427/problem/D 题意 给出一个大小为 \(n\) 的排列,每次操作可以将 \(n\) 个数分为 \(1 \sim ...

  6. Codeforces Global Round 11 B. Chess Cheater(贪心)

    题目链接:https://codeforces.com/contest/1427/problem/B 题意 给出一个长为 \(n\) 由 W, L 组成的字符串,如果一个 W 左侧为 W,则它提供 2 ...

  7. Codeforces Global Round 11 A. Avoiding Zero(前缀和)

    题目链接:https://codeforces.com/contest/1427/problem/A 题意 将 \(n\) 个数重新排列使得不存在为 \(0\) 的前缀和. 题解 计算正.负前缀和,如 ...

  8. Codeforces Global Round 11 B. Chess Cheater (贪心,结构体排序)

    题意:你和朋友进行了\(n\)个回合的棋艺切磋,没有平局,每次要么输要么赢,每次赢可以得一分,假如前一局也赢了,那么可以得两分,结果已成定局,但是你确可以作弊,最多修改\(k\)个回合的结果,问你作弊 ...

  9. Codeforces Global Round 2 E. Pavel and Triangles(思维+DP)

    题目链接:https://codeforces.com/contest/1119/problem/E 题意:有n种长度的棍子,有a_i根2^i长度的棍子,问最多可以组成多少个三角形 题解:dp[i]表 ...

随机推荐

  1. 【SpringBoot1.x】SpringBoot1.x 配置

    SpringBoot1.x 配置 文章源码 配置文件 SpringBoot 使用一个全局的配置文件,配置文件名是固定的. application.properties.application.yml都 ...

  2. Azure 存储简介

    Azure Storage Account(存储账户)包含所有Azure Storage的数据对象,包括Blob.Data Lake Gen2,File.Queue.Disk和Table等服务,该St ...

  3. SQL Server解惑——查询条件IN中能否使用变量

    在SQL Server的查询条件中,能否在IN里面使用变量呢? 如果可以的话,有没有需要注意的地方或一些限制呢?在回答这个问题前,我们先来看看这个例子: IF EXISTS (SELECT 1 FRO ...

  4. 【Linux】关于CentOS系统中,文件权限第11位上是一个点的解读

    ------------------------------------------------------------------------------------------------- | ...

  5. File Inclusion - Pikachu

    概述: 文件包含,是一个功能.在各种开发语言中都提供了内置的文件包含函数,其可以使开发人员在一个代码文件中直接包含(引入)另外一个代码文件. 比如 在PHP中,提供了: include(),inclu ...

  6. .NET Core部署到linux(CentOS)最全解决方案,进阶篇(Supervisor+Nginx)

    在.NET Core部署到linux(CentOS)最全解决方案,常规篇一文,我们详细讲解了传统的.NET Core部署到Linux服务器的方法,学到了Linux在虚拟机下的安装.Xshell,Xft ...

  7. 订阅者模式,公众号、B站、快手用了都说好!

    大家好,今天和大家来聊一个新的设计模式--订阅者模式. 这个模式在我们的生活当中非常常见,可以说是几乎所有的媒体平台都用或多或少地用到了这个模式.比如公众号,我们来仔细梳理一下公众号这个平台当中的整个 ...

  8. 浅析Redis与IO多路复用器原理

    为什么Redis使用多路复用I/O Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导 ...

  9. 网络Devops探索与实践 流程管理分析师

    https://mp.weixin.qq.com/s/OKLiDi78uB8ZkPG2kUVxvA 网络Devops探索与实践 王镇 鹅厂网事 2020-09-23  9月16日举办的2020 ODC ...

  10. 公共错误码 - 支付宝开放平台 https://opendocs.alipay.com/open/common/105806

    公共错误码 - 支付宝开放平台 https://opendocs.alipay.com/open/common/105806