题解-[CEOI2017]Building Bridges
有 \(n\) 个桥墩,高 \(h_i\) 重 \(w_i\)。连接 \(i\) 和 \(j\) 消耗代价 \((h_i-h_j)^2\),用不到的桥墩被拆除,代价为 \(w_i\)。求使 \(1\) 与 \(n\) 联通的最小代价。
数据范围:\(2\le n\le 10^5\),\(0\le h_i,|w_i|\le 10^6\)。
非常经典的李超线段树维护 \(\texttt{dp}\) 的题目,小蒟蒻来分享一下。
很明显 \(w_i\) 是大片大片消耗的,所以记 \(s_i=\sum_{j=1}^i w_j\)。
令 \(f_i\) 表示连接到第 \(i\) 个桥墩的最小代价。可以野蛮推式:
f_i=&\min\{f_j+(h_i-h_j)^2+s_{i-1}-s_j\}\\
=&\min\{f_j+h_i^2-2h_ih_j+h_j^2+s_{i-1}-s_j\}\\
=&h_i^2+s_{i-1}+\min\{f_j-2h_ih_j+h_j^2-s_j\}\\
\end{split}\\
\]
这貌似是个斜率优化式子,但蒟蒻不管,用李超线段树怎么做呢?
考虑李超线段树的作用:多条线段(直线),求单点最值。
发现这个 \(j\) 有很多,而 \(i\) 就只有当前一个:所以可以 \(i\) 对应单点,\(j\) 对应线。换句话说,可以把每个 \(f_i\) 求出来后添加一条直线。
\textrm{let } x=h_i \textrm{ to get }\min\{f_j-2h_ih_j+h_j^2-s_j\}\textrm{.}\\
\]
这题有几个坑,本来是应该由你来快乐地调试的,但是既然写了题解,蒟蒻就放出来了:
- 因为要计算 \(h_j^2\),所以要开 \(\texttt{long long}\) 或用 \(1ll\) 乘之。
- 这个李超线段树是权值线段树,下标要开 \(10^6\) 个,节点个数要开 \(4\cdot 10^6\) 个。
这个做法貌似有点辜负了这题的难度,但是蒟蒻只会这么做。蒟蒻讲不清楚,还是放个蒻蒻的代码吧:
#include <bits/stdc++.h>
using namespace std;
//Start
#define lng long long
#define db double
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define rz resize
const int inf=0x3f3f3f3f;
const lng INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=1e5,M=1e6;
int n,h[N+7];
lng w[N+7],f[N+7];
//Lichaotree
typedef pair<lng,lng> line;
lng g(line&li,int x){return li.fi*x+li.se;}
int inter(line&la,line&lb){return db(lb.se-la.se)/(la.fi-lb.fi);}
line v[(M<<2)+7];
void add(line li,int k=1,int l=0,int r=M){
int mid((l+r)>>1);
lng ly1=g(li,l),ry1=g(li,r),ly=g(v[k],l),ry=g(v[k],r);
if(ly1>=ly&&ry1>=ry);
else if(ly1<=ly&&ry1<=ry) v[k]=li;
else {
int in=inter(li,v[k]);
if(ly1<=ly){
if(in<=mid) add(li,k<<1,l,mid);
else add(v[k],k<<1|1,mid+1,r),v[k]=li;
} else {
if(in>mid) add(li,k<<1|1,mid+1,r);
else add(v[k],k<<1,l,mid),v[k]=li;
}
}
}
lng get(int x,int k=1,int l=0,int r=M){
lng res(g(v[k],x));
if(l==r) return res;
int mid((l+r)>>1);
if(mid>=x) res=min(res,get(x,k<<1,l,mid));
else res=min(res,get(x,k<<1|1,mid+1,r));
return res;
}
//Main
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&h[i]);
for(int i=1;i<=n;i++) scanf("%lld",&w[i]),w[i]+=w[i-1];
fill(v+1,v+(M<<2)+1,mk(0,INF));
f[1]=0,add(mk(-2ll*h[1],1ll*h[1]*h[1]-w[1]));
for(int i=2;i<=n;i++){
f[i]=1ll*h[i]*h[i]+w[i-1]+get(h[i]);
add(mk(-2ll*h[i],f[i]+1ll*h[i]*h[i]-w[i]));
}
printf("%lld\n",f[n]);
return 0;
}
祝大家学习愉快!
题解-[CEOI2017]Building Bridges的更多相关文章
- Luogu4655 [CEOI2017]Building Bridges
Luogu4655 [CEOI2017]Building Bridges 有 \(n\) 根柱子依次排列,每根柱子都有一个高度.第 \(i\) 根柱子的高度为 \(h_i\) . 现在想要建造若干座桥 ...
- ceoi2017 Building Bridges(build)
Building Bridges(build) 题目描述 A wide river has nn pillars of possibly different heights standing out ...
- 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...
- [CEOI2017]Building Bridges
题目 斜率优化思博题,不想写了 之后就一直\(95\)了,于是靠肮脏的打表 就是更新了一下凸壳上二分斜率的写法,非常清爽好写 就当是挂个板子了 #include<algorithm> #i ...
- loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...
- HDU 4584 Building bridges (水题)
Building bridges Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...
- LOJ 2483: 洛谷 P4655: 「CEOI2017」Building Bridges
题目传送门:LOJ #2483. 题意简述: 有 \(n\) 个数,每个数有高度 \(h_i\) 和价格 \(w_i\) 两个属性. 你可以花费 \(w_i\) 的代价移除第 \(i\) 个数(不能移 ...
- loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)
题意 题目链接 Sol \[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\] 然后直接套路斜率优化,发现\(k, x\)都不单调 写个cdq就过了 ...
- @loj - 2483@「CEOI2017」Building Bridges
目录 @desription@ @solution@ @accepted code@ @details@ @another solution@ @another code@ @desription@ ...
随机推荐
- fcntl函数用法——设置文件锁
fcntl函数.锁定文件,设置文件锁.设置获取文件锁:F_GETLK .F_SETLK .F_SETLKW文件锁结构,设置好用于fcntl函数的第三个参数.struct flock{ shor ...
- centos6安装calamari
安装操作系统 首先安装操作系统centos6,安装过程选择的是base server,这个不相同不要紧,出现缺少包的时候去iso找出来安装就可以了 calamari的简单介绍 首先简单的介绍下cala ...
- 网站实现微信扫码登录 php
微信开放平台账号一个,必须是商户,不然你也开不了 1.在开放平台创建应用,并设置回调地址(域名即可) 2.生成二维码,前端代码,用户扫码后会给你的回调地址发送code <span id=&quo ...
- 面试官:连Spring AOP都说不明白,自己走还是我送你?
前言 因为假期原因,有一段时间没给大家更新了!和大家说个事吧,放假的时候一位粉丝和我说了下自己的被虐经历,在假期前他去某互联网公司面试,结果直接被人家面试官Spring AOP三连问给问的一脸懵逼!其 ...
- 金九银十想面BAT?那这些JDK 动态代理的面试点你一定要知道
一.什么是代理 代理是一种常用的设计模式,其目的就是为其他对象提供一个代理以控制对某个对象的访问.代理类负责为委托类预处理消息,过滤消息并转发消息,以及进行消息被委托类执行后的后续处理. 代理模式UM ...
- 公式编辑器MathType之入门攻略
许多时候在工作.学习,尤其是写文献时,需要在Word文档中输入较多公式,简单的公式或符号,可以借助Word自带的公式编辑器,但是,遇到较多并且复杂的公式,该如何高效解决呢?其实可以借助一款强大的公式编 ...
- 怎么用MindManager自带的模板和设计画思维导图
小编知道大家平时工作学习都很忙,思维导图能完成的效率越高越好.所以今天,小编就为大家介绍两个能高效使用思维导图软件完成制作思维导图的小技巧.保证内容充实美观,还不费时间. 一.使用模板 打开MindM ...
- 不想错过网课?不妨用Camtasia录制下来!
2020年突发的这场疫情给我们的日常生活与学习带来了一些不便,却也意外的让网课走红了起来.小学.中学.大学都开始通过媒体工具或直播平台开始授课,但网络授课与实际课堂上课还是有区别的,学生们受到环境影响 ...
- Vegas教程分享,制作古装墨迹笔刷开场效果
许多酷炫的古装大片,片头曲介绍人物的时候,都有一种墨迹笔刷的开场效果,那么这个特效如何利用Vegas去做呢? 1.导入素材文件 首先呢,导入相关文件素材到视频制作软件Vegas中,点击页面上方如图1箭 ...
- css3系列之transform 详解scale
scale() scaleX() scaleY() scaleZ() scale3d() 改变的不是元素的宽高,而是 X 和 Y 轴的刻度 本章有个很冷门的知识点 → scale 和 rotate 一 ...