Bytom侧链Vapor源码浅析-节点出块过程

在这篇文章中,作者将从Vapor节点的创建开始,进而拓展讲解Vapor节点出块过程中所涉及的源码。

做为Vapor源码解析系列的第一篇,本文首先对Vapor稍加介绍。Vapor是目前国内主流公链Bytom的高性能侧链,是从Bytom主链中发展出来的一条独立的高性能侧链。Vapor是平台最重要的区块链基础设施之一,目前采用DPoS的共识算法,具有高性能、高安全、可扩展等特点,用于搭建规模化的商业应用。

Vapor节点创建及出块模块的启动

Vapor入口函数:

vapor/cmd/vapord/main.go

func main() {
cmd := cli.PrepareBaseCmd(commands.RootCmd, "TM", os.ExpandEnv(config.DefaultDataDir()))
cmd.Execute()
}

传入参数node后会调用runNode函数并新建一个节点。

vapor/cmd/vapord/commands/run_node.go

func runNode(cmd *cobra.Command, args []string) error {
startTime := time.Now()
setLogLevel(config.LogLevel) // Create & start node
n := node.NewNode(config)
……
}

vapor节点的结构:

vapor/node/node.go

type Node struct {
cmn.BaseService config *cfg.Config
eventDispatcher *event.Dispatcher
syncManager *netsync.SyncManager wallet *w.Wallet
accessTokens *accesstoken.CredentialStore
notificationMgr *websocket.WSNotificationManager
api *api.API
chain *protocol.Chain
blockProposer *blockproposer.BlockProposer
miningEnable bool
}

其中与出块和共识相关的是blockProposer字段

新建节点的部分源码

vapor/node/node.go

func NewNode(config *cfg.Config) *Node {
//……
node := &Node{
eventDispatcher: dispatcher,
config: config,
syncManager: syncManager,
accessTokens: accessTokens,
wallet: wallet,
chain: chain,
miningEnable: config.Mining, notificationMgr: notificationMgr,
} node.blockProposer = blockproposer.NewBlockProposer(chain, accounts, txPool, dispatcher)
node.BaseService = *cmn.NewBaseService(nil, "Node", node)
return node
}

从这可以看到node.blockProposer本质上是一个vapor的block生成器,实际控制node启动出块的模块是vapor/proposal/blockproposer/blockproposer.go中的:

func (b *BlockProposer) Start() {
b.Lock()
defer b.Unlock() // Nothing to do if the miner is already running
if b.started {
return
} b.quit = make(chan struct{})
go b.generateBlocks() //出块功能的关键模块 b.started = true
log.Infof("block proposer started")
}

出块模块可以通过api启动

vapor/api/miner.go

func (a *API) startMining() Response {
a.blockProposer.Start()
if !a.IsMining() {
return NewErrorResponse(errors.New("Failed to start mining"))
}
return NewSuccessResponse("")
}

以上讲解的是节点创建和出块模块启动所涉及的源码。

generateBlocks()函数开始,将要讲解是Vapor出块过程的具体源码。

Vapor的出块机制

Vapor采用的是DPoS的共识机制进行出块。DPoS是由被社区选举的可信帐户(受托人,得票数排行前10位)来创建区块。为了成为正式受托人,用户要去社区拉票,获得足够多用户的信任。用户根据自己持有的加密货币数量占总量的百分比来投票。DPoS机制类似于股份制公司,普通股民进不了董事会,要投票选举代表(受托人)代他们做决策。在讲解Vapor的出块流程之前,要先了解Vapor在DPoS的参数设定。

DPoS的参数信息位于 vapor/consensus/general.go

type DPOSConfig struct {
NumOfConsensusNode int64
BlockNumEachNode uint64
RoundVoteBlockNums uint64
MinConsensusNodeVoteNum uint64
MinVoteOutputAmount uint64
BlockTimeInterval uint64
MaxTimeOffsetMs uint64
}

接下来对参数进行具体解释

  • NumOfConsensusNode是DPOS中共识节点的数量,Vapor中设置为10,通过投票选出十个负责出块的共识节点。
  • BlockNumEachNode是每个共识节点连续出块的数量,Vapor中设置为12。
  • RoundVoteBlockNums为每轮投票的出块数,Vapor中设置为1200,也就是说每轮投票产生的共识节点会负责出块1200个。
  • MinConsensusNodeVoteNum是成为共识节点要求的最小BTM数量(单位为neu,一亿分之一BTM),Vapor中设置为100000000000000,也就是说一个节点想成为共识节点,账户中至少需要存有100万BTM。
  • MinVoteOutputAmoun为节点进行投票所要求的最小BTM 数量(单位为neu),Vapor中设置为100000000,节点想要参与投票,账户中需要1BTM
  • BlockTimeInterval为最短出块时间间隔,Vapor每间隔0.5秒出一个块。
  • MaxTimeOffsetMs为块时间允许比当前时间提前的最大秒数,在Vapor中设置为2秒。

讲完DPoS的参数设置后,就可以看看Vapor上出块的核心代码 generateBlocks

vapor/proposal/blockproposer/blockproposer.go

func (b *BlockProposer) generateBlocks() {
xpub := config.CommonConfig.PrivateKey().XPub()
xpubStr := hex.EncodeToString(xpub[:])
ticker := time.NewTicker(time.Duration(consensus.ActiveNetParams.BlockTimeInterval) * time.Millisecond)
defer ticker.Stop() for {
select {
case <-b.quit:
return
case <-ticker.C:
}
//1
bestBlockHeader := b.chain.BestBlockHeader()
bestBlockHash := bestBlockHeader.Hash()
now := uint64(time.Now().UnixNano() / 1e6)
base := now
if now < bestBlockHeader.Timestamp {
base = bestBlockHeader.Timestamp
}
minTimeToNextBlock := consensus.ActiveNetParams.BlockTimeInterval - base%consensus.ActiveNetParams.BlockTimeInterval
nextBlockTime := base + minTimeToNextBlock
if (nextBlockTime - now) < consensus.ActiveNetParams.BlockTimeInterval/10 {
nextBlockTime += consensus.ActiveNetParams.BlockTimeInterval
} //2
blocker, err := b.chain.GetBlocker(&bestBlockHash, nextBlockTime)
……
if xpubStr != blocker {
continue
} //3
warnDuration := time.Duration(consensus.ActiveNetParams.BlockTimeInterval*warnTimeNum/warnTimeDenom) * time.Millisecond
criticalDuration := time.Duration(consensus.ActiveNetParams.BlockTimeInterval*criticalTimeNum/criticalTimeDenom) * time.Millisecond
block, err := proposal.NewBlockTemplate(b.chain, b.accountManager, nextBlockTime, warnDuration, criticalDuration)
……
//4
isOrphan, err := b.chain.ProcessBlock(block)
……
//5
log.WithFields(log.Fields{"module": logModule, "height": block.BlockHeader.Height, "isOrphan": isOrphan, "tx": len(block.Transactions)}).Info("proposer processed block") if err = b.eventDispatcher.Post(event.NewProposedBlockEvent{Block: *block}); err != nil {
log.WithFields(log.Fields{"module": logModule, "height": block.BlockHeader.Height, "error": err}).Error("proposer fail on post block")
}
}
}

代码经过精简,省略了一些无关紧要的部分,并将重要的部分,分为5个模块。

  1. 计算并调整出块的时间
  2. 通过GetBlocker 获取顺序下一个block的公钥,并与当前块比对,判断当前块的出块顺序是否合法。
  3. 通过b.chain.ProcessBlock根据模板生成了一个block。
  4. 通过chain.ProcessBlock(block)尝试把block加工处理后加到本机持有的区块链上。
  5. 使用logrus框架记录新的块,并像网络中广播。

b.chain.GetBlocker

针对generateBlocks()中几个重要的模块进行拆分讲解。

vapor/protocol/consensus_node_manager.go

GetBlocker()传入当前高度块的哈希和下一个块的出块时间。

// 返回一个特定时间戳的Blocker
func (c *Chain) GetBlocker(prevBlockHash *bc.Hash, timeStamp uint64) (string, error) {
consensusNodeMap, err := c.getConsensusNodes(prevBlockHash)
//…… prevVoteRoundLastBlock, err := c.getPrevRoundLastBlock(prevBlockHash)
//…… startTimestamp := prevVoteRoundLastBlock.Timestamp + consensus.ActiveNetParams.BlockTimeInterval
//获取order,xpub为公钥
order := getBlockerOrder(startTimestamp, timeStamp, uint64(len(consensusNodeMap)))
for xPub, consensusNode := range consensusNodeMap {
if consensusNode.Order == order {
return xPub, nil
}
}
//……
}
  • 通过调用c.getConsensusNodes()获得一个存储共识节点的Map。
  • 获取上一轮投票的最后一个块,在加上最短出块时间间隔,计算得到这一轮的开始时间戳。
  • 调用getBlockerOrder,通过开始时间戳和当前要出块的时间戳计算出这个时间点出块的order。
  • 最后比对consensusNodeMapconsensusNode.Order,并返回公钥。

这个模块是为了找出当前时间戳对应出块的共识节点,并返回节点的公钥。因为DPoS中出块的节点和顺序必须是固定的,而使用generateBlocks()模块尝试出块的共识节点不一定是当前时间的合法出块节点,因此需要本模块通过对比公钥进行节点资格的验证。

proposal.NewBlockTemplate

vapor/proposal/proposal.go

func NewBlockTemplate(chain *protocol.Chain, accountManager *account.Manager, timestamp uint64, warnDuration, criticalDuration time.Duration) (*types.Block, error) {
builder := newBlockBuilder(chain, accountManager, timestamp, warnDuration, criticalDuration)
return builder.build()
}
func newBlockBuilder(chain *protocol.Chain, accountManager *account.Manager, timestamp uint64, warnDuration, criticalDuration time.Duration) *blockBuilder {
preBlockHeader := chain.BestBlockHeader()
block := &types.Block{
BlockHeader: types.BlockHeader{
Version: 1,
Height: preBlockHeader.Height + 1,
PreviousBlockHash: preBlockHeader.Hash(),
Timestamp: timestamp,
BlockCommitment: types.BlockCommitment{},
BlockWitness: types.BlockWitness{Witness: make([][]byte, consensus.ActiveNetParams.NumOfConsensusNode)},
},
} builder := &blockBuilder{
chain: chain,
accountManager: accountManager,
block: block,
txStatus: bc.NewTransactionStatus(),
utxoView: state.NewUtxoViewpoint(),
warnTimeoutCh: time.After(warnDuration),
criticalTimeoutCh: time.After(criticalDuration),
gasLeft: int64(consensus.ActiveNetParams.MaxBlockGas),
timeoutStatus: timeoutOk,
}
return builder
}

在Vapor上每个区块有区块头和区块的主体,区块头中包含版本号、高度、上一区块的hash、时间戳等等,主体包括区块链的引用模块、账户管理器、区块头、Transaction状态(版本号和验证状态)、utxo视图等。这一部分的目的是将,区块的各种信息通过模板包装成一个block交给后面的ProcessBlock(block)加工处理。

b.chain.ProcessBlock

vapor/protocol/block.go

func (c *Chain) ProcessBlock(block *types.Block) (bool, error) {
reply := make(chan processBlockResponse, 1)
c.processBlockCh <- &processBlockMsg{block: block, reply: reply}
response := <-reply
return response.isOrphan, response.err
}
func (c *Chain) blockProcesser() {
for msg := range c.processBlockCh {
isOrphan, err := c.processBlock(msg.block)
msg.reply <- processBlockResponse{isOrphan: isOrphan, err: err}
}
}

很显然,这只是链更新的入口,block数据通过processBlockMsg结构传入了c.processBlockCh这个管道。随后数据通过blockProcesser()处理后存入了msg.reply管道,而最后处理这个block的是processBlock()函数:

func (c *Chain) processBlock(block *types.Block) (bool, error) {
//1
blockHash := block.Hash()
if c.BlockExist(&blockHash) {
log.WithFields(log.Fields{"module": logModule, "hash": blockHash.String(), "height": block.Height}).Debug("block has been processed")
return c.orphanManage.BlockExist(&blockHash), nil
}
//2
c.markTransactions(block.Transactions...)
//3
if _, err := c.store.GetBlockHeader(&block.PreviousBlockHash); err != nil {
c.orphanManage.Add(block)
return true, nil
}
//4
if err := c.saveBlock(block); err != nil {
return false, err
} bestBlock := c.saveSubBlock(block)
bestBlockHeader := &bestBlock.BlockHeader c.cond.L.Lock()
defer c.cond.L.Unlock()
//5
if bestBlockHeader.PreviousBlockHash == c.bestBlockHeader.Hash() {
log.WithFields(log.Fields{"module": logModule}).Debug("append block to the end of mainchain")
return false, c.connectBlock(bestBlock)
}
//6
if bestBlockHeader.Height > c.bestBlockHeader.Height {
log.WithFields(log.Fields{"module": logModule}).Debug("start to reorganize chain")
return false, c.reorganizeChain(bestBlockHeader)
}
return false, nil
}

processBlock()函数返回的bool表示的是block是否为孤块。

  1. 通过block的hash判断这个block是否已经在链上。若已存在,则报错并返回false(表示该block不是孤块)
  2. 将block中的Transactions标记,后续会调用c.knownTxs.Add()将Transactions加入到Transaction集合中。
  3. 判断是否为孤块,如果是,则调用孤块管理部分的模块处理并返回true。
  4. 保存block,在saveBlock()中会对签名和区块进行验证。
  5. bestBlockHeader.PreviousBlockHash == c.bestBlockHeader.Hash()的情况说明一切正常,新block被添加到链的末端。
  6. bestBlockHeader.Height > c.bestBlockHeader.Height 表示出现了分叉,需要回滚。

总结

本篇文章从Vapor设置出块开始,到出块流程结束,细节层层解析节点设置出块和出块部分所涉及的源码。虽然本文至此篇幅已经比较长,但仍有重要的问题没有讲解清楚。例如,generateBlocks()中的第2点,程序会对出块的顺序进行查验,但这个出块的顺序是怎么获得还未做细致的解析。

那么,下一篇文章将针对Vapor中DPoS机制的细节进行源码级解析。

Bytom侧链Vapor源码浅析-节点出块过程的更多相关文章

  1. Android开发之Theme、Style探索及源码浅析

    1 背景 前段时间群里有伙伴问到了关于Android开发中Theme与Style的问题,当然,这类东西在网上随便一搜一大把模板,所以关于怎么用的问题我想这里也就不做太多的说明了,我们这里把重点放在理解 ...

  2. spring源码浅析——IOC

    =========================================== 原文链接: spring源码浅析--IOC   转载请注明出处! ======================= ...

  3. CountDownLatch源码浅析

    Cmd Markdown链接 CountDownLatch源码浅析 参考好文: JDK1.8源码分析之CountDownLatch(五) Java并发之CountDownLatch源码分析 Count ...

  4. 【深入浅出jQuery】源码浅析--整体架构

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

  5. 【深入浅出jQuery】源码浅析2--奇技淫巧

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

  6. Struts2源码浅析-ConfigurationProvider

    ConfigurationProvider接口 主要完成struts配置文件 加载 注册过程 ConfigurationProvider接口定义 public interface Configurat ...

  7. HashSet其实就那么一回事儿之源码浅析

    上篇文章<HashMap其实就那么一回事儿之源码浅析>介绍了hashMap,  本次将带大家看看HashSet, HashSet其实就是基于HashMap实现, 因此,熟悉了HashMap ...

  8. Android 手势识别类 ( 三 ) GestureDetector 源码浅析

    前言:上 篇介绍了提供手势绘制的视图平台GestureOverlayView,但是在视图平台上绘制出的手势,是需要存储以及在必要的利用时加载取出手势.所 以,用户绘制出的一个完整的手势是需要一定的代码 ...

  9. 【深入浅出jQuery】源码浅析2--使用技巧

    最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...

随机推荐

  1. Python之爬虫(二十) Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  2. unity-TextAsset

    定义: 当把Text files导到unity,将会变成TextAsset. 支持的格式: .txt .html .htm .xml .bytes .json .csv .yaml .fnt 注意 不 ...

  3. three.js 曲线

    上几篇说了three.js的曲线,这篇来郭先生来说说three.js曲线,在线案例点击郭先生的博客查看. 1. 了解three.js曲线 之前已经说了一些three.js的几何体,这篇说一说three ...

  4. 使用QtCreator遇到的一些问题

    0. 背景 最近在学习QtCreator(版本:4.8.1:编译器:MSVC 2017 64-bit),遇到了一些问题,特记录如下.( 1. 引用库 QtCreator可以直接包含Windows.h, ...

  5. MYSQL 使用基础 - 这么用就对了

    这篇文章主要梳理了 SQL 的基础用法,会涉及到以下方面内容: SQL大小写的规范 数据库的类型以及适用场景 SELECT 的执行过程 WHERE 使用规范 MySQL 中常见函数 子查询分类 如何选 ...

  6. 数据库-SQL查询语言(一)

    SQL数据定义 DDL sql的DDL不仅能定义一组关系,还能定义每个关系的信息,包括: 每个关系的模式 每个属性的取值类型 完整性约束 每个关系的维护的索引集合 每个关系的安全性和权限信息 每个关系 ...

  7. PyQt样式设计

    QSS QSS(Qt Style Sheets)即PyQt样式表,是用来定义控件外观的一种机制.QSS内部实现大量参考了CSS,但是功能没有CSS强大,主要体现在选择器少,属性少等. 使用QSS 格式 ...

  8. 设计模式:decorator模式

    两点: 继承同一虚接口,实现数据一致性 桥接方式指向被装饰类 目的:在不改变被装饰类功能的前提下增加新功能 特点:继承是子类和父类强耦合,桥接是低耦合 例子: class Print //抽象接口 { ...

  9. 年薪50W京东软件测试工程师的成长路——我们都曾一样迷茫

    这两天和朋友谈到软件测试的发展,其实软件测试已经在不知不觉中发生了非常大的改变,前几年的软件测试行业还是一个风口,随着不断地转行人员以及毕业的大学生疯狂地涌入软件测试行业,目前软件测试行业“缺口”已经 ...

  10. Windows电脑多个SSH Key管理.md

    笔者偏在阿里云,Github,开源中国上均存放一些私有项目代码,因此需要再Windows电脑上配置多个SSH Key 环境 操作系统:windows 7 Git 提示:Git 安装后就可以使用 Git ...