Manacher (马拉车) 算法:解决最长回文子串的利器
最长回文子串
回文串就是原串和反转字符串相同的字符串。比如 aba,acca。前一个是奇数长度的回文串,后一个是偶数长度的回文串。
最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串。
Brute Force 做法
枚举所有子串,判断是否是回文串,然后寻找最大长度。寻找所有子串要两重循环,判断是否是回文要一重循环,总体时间复杂度 \(O(n^3)\)。
稍微优化一下,可以枚举对称中心,然后向两边扩展,直到遇到两个不同的字符,枚举下一个对称中心,寻找其中的最大长度,时间复杂度 \(O(n^2)\)。
还可以使用 DP 解决,求原串与反转字符串的最长公共子序列 (LCS),时间复杂度 \(O(n^2)\)。
Manacher 算法
接下来就是重点了,Manacher 算法,在1975年由一个叫 Manacher 的人发明的。能够在 O(n) 的时间求得最长回文子串。
前面提到,回文串有奇数长度的和偶数长度的,分类讨论有些复杂,可以参考这里。为了避免分类讨论,可以使用一个技巧:在字符串首尾以及每两个字符之间插入一个 '#'。比如 abaacca,转换后就是 #a#b#a#a#c#c#a#。那么不管是奇回文 aba 还是偶回文 acca,转换后都是奇回文 (#a#b#a# 和 #a#c#c#a#)。
string init(string s) {
string res;
res += '@'; // 在开头加入哨兵防止越界
for(int i = 0; i < s.size(); ++i) {
res += '#';
res += s[i];
}
res += '#';
res += '$'; // 结尾同样加入哨兵防止越界
return res;
}
\(Manacher\) 算法的思想来自于上述枚举对称中心的思想。该算法需要维护一个 \(len\) 数组,\(len[i]\) 代表 \(i\) 为中心的最长回文子串的长度。
设 \(s\) 为原字符串,\(mx\) 为之前计算的回文串中右端点的最大值,这个回文串的中心位置为 \(id\),也就是 \(mx=id+len[id]\)。
每次计算的时候,id 的右边和左边是对称的,因此计算右边的时候不需要用从对称中心向两边扩展的思想,而是只用一行代码解决:len[i] = min(mx - i, len[2 * id - i]);,这也是 Manacher 中最关键的一行代码。
如下图所示,\(id\) 右边到 \(mx\) 之间的子串与 \(id\) 左边是对称的,所以右边的 \(len[i]\) 最大长度为左边与之对称的 \(len[2×id−i]\),由于右边的回文串不能超过 \(mx\) (原因见第 2 张图),所以 len[i] = min(mx - i, len[2 * id - i]);。

\(id\) 右边的回文串长度不能超过 \(mx−i\) 的原因是,如果 \(len[2∗id−i]\) 更长,如下图的黄色部分,那么右边的黄色部分与左边的黄色部分相同,那么黑色部分应该可以更长,产生矛盾。

理解了上面的内容基本上就理解了 \(Manacher\) 算法了。
代码实现如下:
如果觉得这个代码解释的不太清楚的话可以直接看下面的模板题或者看下刘毅学长的代码
int Manacher(string s) {
memset(len, 0, sizeof(len));
int mx = 0, id = 0;
int ans = 0;
for(int i = 1; i < s.size() - 1; ++i) {
if(mx > i) {
len[i] = min(mx - i, len[2 * id - i]); // 上面提到的最关键的一行代码
} else {
len[i] = 1; // 如果 i 超过右边界要从头计算
}
while(s[i - len[i]] == s[i + len[i]]) { // 从头计算的方法,就是上面提到的从中心向两边扩展
++len[i];
}
// 更新 mx 和 id
if(i + len[i] > mx) {
mx = i + len[i];
id = i;
}
ans = max(ans, len[i]);
}
return ans - 1; // len[i] 中的最大值-1 即为原串的最长回文子串长度
}
模板题:HDU 3068 最长回文
题目链接:HDU 3068 最长回文
// Author : RioTian
// Time : 20/11/11
#include <bits/stdc++.h>
#define ms(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = 220000;
int len[maxn];
string init(string s) {
string res;
res += '@';
for (int i = 0; i < s.size(); ++i) {
res += '#';
res += s[i];
}
res += '#';
res += '$';
return res;
}
int Manacher(string s) {
ms(len, 0);
int mx = 0, id = 0;
int ans = 0;
for (int i = 1; i < s.size() - 1; ++i) {
if (mx > i)
len[i] = min(mx - i, len[2 * id - i]);
else
len[i] = 1;
while (s[i - len[i]] == s[i + len[i]]) ++len[i];
if (i + len[i] > mx) {
mx = i + len[i];
id = i;
}
ans = max(ans, len[i]);
}
return ans - 1;
}
int main() {
// freopen("in.txt", "r", stdin);
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
string s;
while (cin >> s) {
string tmp = init(s);
cout << Manacher(tmp) << endl;
}
}
参考
Manacher (马拉车) 算法:解决最长回文子串的利器的更多相关文章
- 使用manacher算法解决最长回文子串问题
要解决的问题 求一个字符串最长回文子串是什么.且时间复杂度 O(N) 具体描述可参考: LeetCode_5_最长回文子串 LintCode_200_最长回文子串 暴力解法 以每个字符为中心向左右两边 ...
- 小白月赛13 B小A的回文串 (马拉车算法求最长回文子串)
链接:https://ac.nowcoder.com/acm/contest/549/B来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...
- Manacher's Algorithm 马拉车算法(最长回文串)
这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这 ...
- Manacher算法(马拉车)求最长回文子串
Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...
- Manacher算法——求最长回文子串
首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...
- manacher算法求最长回文子串
一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...
- Manacher算法 求 最长回文子串
1 概述(扯淡) 在了解Manacher算法之前,我们得先知道什么是回文串和子串. 回文串,就是正着看反着看都一样的字符串.比如说"abba"就是一个回文串,"abbc& ...
- Manacher算法 - 求最长回文串的利器
求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...
- Manacher模板( 线性求最长回文子串 )
模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...
随机推荐
- MySql查询语句中的变量使用
前言 今日在LeetCode刷MySql的题,遇到一题,题目到没什么,解答完了之后习惯去看此题的题解,有位大佬的思路让博主感觉很惊艳,至此,特地记录学习一下. 题目 解答 乍一看题目也没啥,分数排名, ...
- JVM初步入门(很初级,建议只做大致了解用)
jvm初步入门 本博客中的所有内容都是来自b站狂神说视频教程,如有侵权联系我删除. 下面是视频链接:b站狂神说 关于jvm的几个小问题 1. jvm的位置: jvm是一个运行在操作系统上的用c语言编写 ...
- 一文看懂YOLO v3
论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf论文:YOLOv3: An Incremental Improvement YOLO系列的 ...
- ps 安装 ps 2017 下载 及教程(保姆式教程)
链接:https://pan.baidu.com/s/1GJHiwmxwRApFYhyNZBCQtQ 提取码:7r6u 以上是百度网盘的地址. 1.下载解压安装前先断网在安装点击set-up 软件,之 ...
- java 的 callback
Java 本身没有回调这一说,但是面向对象可以模拟出来. 1. 回调接口对象 ICommand package com.git.Cmder; public interface ICommand { v ...
- Java 8 有多牛逼?打破一切你对接口的认知!
前段时间面试了一个 39 岁的程序员,结果不是很理想,没看过的点击这里阅读. 最近也面试一些 Java 程序员,不乏工作 4.5 年经验的,当我问他一些 Java 8 的新特性时,大多却答不上来. 比 ...
- 利用HDFS实现ElasticSearch7.2容灾方案
利用HDFS实现ElasticSearch7.2容灾方案 目录 利用HDFS实现ElasticSearch7.2容灾方案 前言 快照版本兼容 备份集群 HDFS文件系统 软件下载 JDK环境 配置系统 ...
- 2017-18一《电子商务概论》专科作业--经管B1601/2、经管B1631
第1次作业: 1.你如何来定义和理解电子商务?电子商务对社会经济带了怎样的影响,企业.消费者的反应如何?你知道哪些电子商务企业,他们都属于什么类型? 2.请详细阐述应该如何关注哪些事项才能在淘宝网成功 ...
- 多测师讲解python _unttest框架002(结合项目实战)_高级讲师肖sir
第一种调用方法: if __name__ == '__main__':# #第一种运行方法:运行所有的用例 import unittestfrom selenium import webdriverf ...
- 多测师讲解python_函数调用方法__高级讲师肖sir
(一)函数的介绍 函数:一个工具,随调随用优点:# 降低代码冗余# 增加代码的复用性,提高开发效率# 提高程序扩展性# 函数有两个阶段:定义阶段,调用阶段.# 定义时:只检查函数体内代码语法,不执行 ...