UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人
给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种?
n<=1000,x<=5000.
考虑一个排列真正的有效取模只有当 \(x\geq a_i\)时才行 所以x通过一个排列真正有效的数字必然是从大到小排列的。
求第一问 不难想到将模数从大到小排列 设f[i][j]表示到达第i个模数此时值为j是否可行。
这样dp下来我们只需要取出小于minn的那个可行值最大的即可。
考虑方案数 这样dp同样有效。
不过复杂度 \(n^2\cdot x\) 比较高。
考虑优化 不难发现对于f[i][j]来说 如果 j比\(a_{i-1}\)还要小 那么没有必要再把状态传到i-1了 直接让i-1在后面位置中随便选择一个位置即可。
设状态f[i]表示权值到达i的方案数.
此时只有<=i的模数才能优影响 且前面的所有模数已经被我们安排好位置了。
如果选择了一个模数 \(a_j\) 那么 设w=i%\(a_j\) 权值在i-1到w+1之间的模数便没用了随便排个位置即可。
复杂度\(nx\) 可以通过.(值得一提的是 最后能获得的最大值尽量用标记来判断 因为方案数要取模,(刚好模为0 就脸黑了.
const int MAXN=5010;
int n,m,minn;
int a[MAXN],vis[MAXN],b[MAXN];
ll f[MAXN],inv[MAXN],fac[MAXN];
inline ll ksm(ll b,int p){ll cnt=1;while(p){if(p&1)cnt=cnt*b%mod;b=b*b%mod;p=p>>1;}return cnt;}
inline void prepare()
{
fac[0]=1;
rep(1,n,i)fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);minn=INF;
rep(1,n,i)get(a[i]),minn=min(minn,a[i]),++vis[a[i]];
rep(1,m,i)vis[i]+=vis[i-1];
prepare();f[m]=fac[n]*inv[vis[m]]%mod;
sort(a+1,a+1+n);
fep(m,1,i)
{
if(!f[i])continue;
rep(1,n,j)
{
if(a[j]>i)break;
f[i%a[j]]=(f[i%a[j]]+f[i]*fac[vis[i]-1]%mod*inv[vis[i%a[j]]])%mod;
}
}
fep(minn-1,0,i)if(f[i]){printf("%d %lld\n",i,f[i]);return 0;}
}
UOJ #22 UR #1 外星人的更多相关文章
- 【UOJ#22】【UR #1】外星人(动态规划)
[UOJ#22][UR #1]外星人(动态规划) 题面 UOJ 题解 一道简单题? 不难发现只有按照从大往小排序的顺序选择的才有意义,否则先选择一个小数再去模一个大数是没有意义的. 设\(f[i][j ...
- Uoj 22 外星人
Uoj 22 外星人 注意到一个数只有 \(\%\) 了小于等于自己的数时,才可能有变化,否则可以随意安排,不会对最后最优解造成影响. 用 \(f[x]\) 表示给一个数 \(x\) ,仅用 \(a[ ...
- 【UOJ#22】【UR#1】外星人
2044年,Picks建成了人类第一台基于量子理论的银河系信息传递机. Picks游遍了宇宙,雇用了 n 个外星人来帮他作为信息传递机的中转站.我们将外星人依次编号为 1 到 n,其中 i 号外星人有 ...
- 【uoj#22】[UR #1]外星人 组合数学+dp
题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \tex ...
- UOJ#22. 【UR #1】外星人
传送门 分析 我们发现一个很神的性质,就是对于一个数如果放在它之前的数小于它那它一定对答案没有贡献 于是我们用dp[i][j]表示从大往小考虑了前i个数,当前答案是j的方案数 我们知道它由两种情况转移 ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ22 UR #1外星人(动态规划)
https://www.cnblogs.com/Gloid/p/10629779.html 这一场的D. #include<bits/stdc++.h> using namespace s ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
- UOJ【UR #12】实验室外的攻防战
题意: 给出一个排列$A$,问是否能够经过以下若干次变换变为排列$B$ 变换:若${A_i> A_i+1}$,可以${swap(A_i,A_i+1)}$ 考虑一个数字从A排列到B排列连出来的路径 ...
随机推荐
- CSS技术让高度自适应减少很多不必要的检测
高度自适应第一种情况 1.高度不去设置,或者高度设置auto 内容撑开父元素的高度.2.内容撑开父元素的高度 -> 最小高度的设置 min-height3.浮动元素添加高度自适应 -> 添 ...
- HTML5(三)SVG vs. Canvas
HTML5 内联 SVG 什么是SVG? SVG 指可伸缩矢量图形 (Scalable Vector Graphics) SVG 用于定义用于网络的基于矢量的图形 SVG 使用 XML 格式定义图形 ...
- MySQL Error (Always Continue)
MySQL Error (Always Continue) 其实大部分error在网上都有对应的解决办法,尤其是对Mysql这种使用范围很广的技术.自己就不为每个error单独发布博客了,仅在这里 ...
- SpringCloud系列之集成分布式事务Seata应用篇
目录 前言 项目版本 项目说明 Seata服务端部署 Seata客户端集成 cloud-web module-order module-cart module-goods module-wallet ...
- 状压DP之Mixed Up Cows G
题目 传送们 大意 约翰家有N头奶牛,第i头奶牛的编号是Si,每头奶牛的编号都是唯一的.这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍.在一只混乱的队 伍中,相邻奶牛的 ...
- NOI 2003 逃学的小孩 (树的直径)
[NOI2003 逃学的小孩] 题目描述 Chris家的电话铃响起了,里面传出了Chris的老师焦急的声音:"喂,是Chris的家长吗?你们的孩子又没来上课,不想参加考试了吗?"一 ...
- Alink漫谈(十) :线性回归实现 之 数据预处理
Alink漫谈(十) :线性回归实现 之 数据预处理 目录 Alink漫谈(十) :线性回归实现 之 数据预处理 0x00 摘要 0x01 概念 1.1 线性回归 1.2 优化模型 1.3 损失函数& ...
- web 部署专题(九):Nginx 前后端分离中csrf_token 认证的实现
1. 思路 参考:https://stackoverflow.com/questions/20826201/simple-csrf-protection-using-nginx-alone?r=Sea ...
- [Cordova-IOS]JavaScript与Swift交互
[Cordova-IOS]Swift调用JavaScript中的函数 概述 Cordova中,通过插件的形式可以实现JavaScript与Swift的交互,关于Cordova插件的定义以及Swfit如 ...
- 一篇文章,学会jmeter模拟文件上传、下载操作
最近很多同学都在问jmeter上传,下载文件的脚本怎么做? 正巧这阵子忙完有时间,就来“折腾”一番,哈哈 现整理出来和大家分享 到底该怎么做? 一.准备工作: 上传接口一个(自行开发解决了) 下载接口 ...