F - Sightseeing

传送门: POJ - 3463

分析

一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数。

这道题唯一要注意的就是次短路的求法

首先题目中说从起点到终点至少有一条路径,所以我们就不用考虑不可达的情况

我们先考虑如果a到b有一条边,b到c有一条边

那么a到c经过b的路程中次短路只有两种选择,一种是a到b的最短路+b到c的次短路,另一种是a到b的次短路+b到c的次短路

所以我们只需要记录次短路和最短路两个值就可以了

然后我们去跑dij,每次加上一条边会有四种情况对答案产生影响

1.比最短路短

如果之前的最短路不为无穷大的话,我们就把原先最短路的值赋值给原先次短路的值,同时把次短路的数量更新为原先最短路的数量

再更新最短路,同时要把最短路的数量改为到达上一个节点的方案数

2.和最短路一样短

把最短路的数量加一

3.比次短路短

更新次短路的长度,同时要把次短路的数量改为到达上一个节点的方案数

4.和次短路一样长

把次短路的数量加一

代码

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
const int maxd=1005,maxb=20005;
int head[maxd],tot=1;
struct asd{
int from,to,next,val;
}b[maxb];
void ad(int aa,int bb,int cc){
b[tot].from=aa;
b[tot].to=bb;
b[tot].val=cc;
b[tot].next=head[aa];
head[aa]=tot++;
}
struct jie{
int num,dis,jud;
jie(int aa=0,int bb=0,int cc=0){
num=aa,dis=bb,jud=cc;
}
bool operator < (const jie& A) const{
return dis>A.dis;
}
};
priority_queue<jie> q;
int dis[maxd][3],cnt[maxd][3];
bool vis[maxd][3];
void dij(int xx){
memset(dis,0x3f,sizeof(dis));
memset(cnt,0,sizeof(cnt));
memset(vis,0,sizeof(vis));
dis[xx][0]=0,cnt[xx][0]=1;
q.push(jie(xx,0,0));
while(!q.empty()){
int now=q.top().num;
int judd=q.top().jud;
q.pop();
if(vis[now][judd]) continue;
vis[now][judd]=1;
for(int i=head[now];i!=-1;i=b[i].next){
int u=b[i].to;
int ndis=dis[now][judd]+b[i].val;
if(ndis<dis[u][0]){
if(dis[u][0]!=0x3f3f3f3f){
dis[u][1]=dis[u][0];
cnt[u][1]=cnt[u][0];
q.push(jie(u,dis[u][0],1));
}
dis[u][0]=ndis;
cnt[u][0]=cnt[now][judd];
q.push(jie(u,ndis,0));
}
else if(ndis==dis[u][0]){
cnt[u][0]+=cnt[now][judd];
}
else if(ndis==dis[u][1]){
cnt[u][1]+=cnt[now][judd];
}
else if(ndis<dis[u][1]){
dis[u][1]=ndis;
cnt[u][1]=cnt[now][judd];
q.push(jie(u,ndis,1));
}
}
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(head,-1,sizeof(head));
memset(&b,0,sizeof(struct asd));
tot=1;
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
ad(aa,bb,cc);
}
int qd,zd;
scanf("%d%d",&qd,&zd);
dij(qd);
int ans=cnt[zd][0];
if(dis[zd][0]==dis[zd][1]-1) ans+=cnt[zd][1];
printf("%d\n",ans);
}
return 0;
}

POJ - 3463 Sightseeing 最短路计数+次短路计数的更多相关文章

  1. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  2. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  3. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  4. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  5. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

  6. POJ 3463 Sightseeing 题解

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  7. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  8. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  9. POJ 3463 有向图求次短路的长度及其方法数

    题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...

随机推荐

  1. MySQL数据库基本使用(DDL)

    MySQL是一种开源的关系型数据库管理系统,并且因为其性能.可靠性和适应性而备受关注.下面是最近一个月MySQL.Oracle.SQL Server的百度指数搜索指数对比: 可以看到,在最近一个月,M ...

  2. Java 8 新特性——检视阅读

    Java 8 新特性--检视阅读 参考 Java 8 新特性--菜鸟 Oracle 公司于 2014 年 3 月 18 日发布 Java 8 ,它支持函数式编程,新的 JavaScript 引擎,新的 ...

  3. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. 一文了解Docker容器技术的操作

    一文了解Docker容器技术的操作 前言一.Docker是什么二.Docker的安装及测试Docker的安装Docker的Hello world测试三.Docker的常见操作镜像的基本操作容器的基本操 ...

  5. 第一章02-异常情况下Activity的生命周期

    异常情况下的生命周期分析 1. 资源相关的系统配置发生改变导致Activity被杀死并重新创建 比如,屏幕旋转,默认情况下Activity会被销毁并且重新创建,不过我们也可以阻止系统重新创建我们的Ac ...

  6. 安装fail2ban,防止ssh爆破及cc攻击

    背景:之前写过shell脚本防止服务器ssh爆破,但是对于服务器的cpu占用较多,看来下资料安装fail2ban 可以有效控制ssh爆破 1:fail2ban 安装(环境:centos6  宝塔) y ...

  7. Java使用 Thumbnails 压缩图片

    业务:用户上传一张图片到文件站,需要返回原图url和缩略图url 处理思路: 因为上传图片方法返回url是单个上传,第一步先上传原图并返回url 处理缩略图并上传:拿到MultipartFile压缩成 ...

  8. Java实现定时任务的三种简单方法

    第一种方法: /** * 先定义一个任务每天执行的时间点,再写一个死循环,不断地拿当前时间和事先定义的时间去比对,若到时间则执行任务 */ @Test public void test1() { St ...

  9. [转] 浅谈C++中的那些内存泄露

    点击阅读原文 尽管学过C语言.可是C++里面的一些基础还是不太懂,还须要再掌握. 对于内存泄露,我的个人理解就是程序在执行过程中,自己开辟了空间,用完这块空间后却没有释放. 今晚上我就犯了这种低级错误 ...

  10. Backup Database pubs to Disk='D:\DataSQL\pubs.bak' --->动态备份所有数据库

    备份数据库 在项目实施时,备份恢复数据库还是有必要的,自动或傻瓜式的操作比较方便,未测试,失业了,现在静不下心来,有机会要求再做这类操作时实现它,此处先收藏备用 /* <Dynamic SQL ...