[USACO16OPEN]248 G——区间dp
[USACO16OPEN]248 G
题目描述
Bessie likes downloading games to play on her cell phone, even though she doesfind the small touch screen rather cumbersome to use with her large hooves.
She is particularly intrigued by the current game she is playing.The game starts with a sequence of \(N\) positive integers \((2\leq N\leq 248)\), each in the range \(1...40\). In one move, Bessie cantake two adjacent numbers with equal values and replace them a singlenumber of value one greater (e.g., she might replace two adjacent \(7\)s with an \(8\) ). The goal is to maximize the value of the largest numberpresent in the sequence at the end of the game. Please help Bessiescore as highly as possible!
给定一个 \(1\times n\) 的地图,在里面玩 \(2048\),每次可以合并相邻两个(数值范围 \(1-40\)),问最大能合出多少。注意合并后的数值并非加倍而是 \(+1\),例如 \(2\) 与 \(2\) 合并后的数值为 \(3\) 。
输入格式
The first line of input contains \(N\), and the next \(N\) lines give the sequence
of \(N\) numbers at the start of the game.
输出格式
Please output the largest integer Bessie can generate.
输入输出样例
输入
4
1
1
1
2
输出
3
说明/提示
In this example shown here, Bessie first merges the second and third 1s to obtain the sequence \(1 2 2\), and then she merges the \(2\)s into a
\(3\). Note that it is not optimal to join the first two \(1\)s.
题目简介
博主本人看英语看得也难受,在这里简单解释一下吧。
就是给一个长度为 \(n\) 的序列,相邻并相同数字之间可以合并,合并后的值为原来值 \(+1\),不相同的值不允许合并,跟之前的石子合并不同,求怎么合并能够使合并后的序列中最大值最大。
数组含义
\(a[i]\): 原序列。
\(f[i][j]\): 从 \(i\) 到 \(j\) 的序列合并后的值。例如样例中 \(f[2][3]=1+1=2\) 。
基本思路
阶段:枚举宽度为 \(d\) 的序列。
状态:枚举 \(i\) 和 \(j\),从 \(i\) 到 \(j\) 的序列。枚举 \(k\),将从 \(i\) 到 \(j\) 的序列分为两段。
决策:若 \(f[i][k]==f[k+1][j]\),则可以合并,与 \(f[i][j]\) 取最大值。
动态转移方程:
if(f[i][k]==f[k+1][j]&&f[i][k]!=0&&f[k+1][j]!=0){
f[i][j]=max(f[i][j],f[i][k]+1);
ans=max(ans,f[i][j]);
}
注意
初始化 \(f[i][i]=a[i]\)。
若 \(f[i][k]==f[k+1][j]\),但是两个都为 \(0\),不可以合并。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn=250+50;
int n;
int a[maxn];
int f[maxn][maxn];
int ans;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
f[i][i]=a[i];
}
for(int d=2;d<=n;d++){
for(int i=1,j;(j=i+d-1)<=n;i++){
for(int k=i;k<j;k++){
if(f[i][k]==f[k+1][j]&&f[i][k]!=0&&f[k+1][j]!=0){
f[i][j]=max(f[i][j],f[i][k]+1);
ans=max(ans,f[i][j]);
}
}
}
}
printf("%d\n",ans);
return 0;
}
[USACO16OPEN]248 G——区间dp的更多相关文章
- [luoguP3146] [USACO16OPEN]248(区间DP)
传送门 f[i][j]表示区间 i-j 合并的最大值 转移: 若f[i][k] && f[k+1][j] && f[i][k] == f[k+1][j] --> ...
- 「区间DP」「洛谷PP3146 」[USACO16OPEN]248 G
[USACO16OPEN]248 G 题目: 题目描述 Bessie likes downloading games to play on her cell phone, even though sh ...
- 「USACO16OPEN」「LuoguP3146」248(区间dp
题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small to ...
- 「USACO16OPEN」「LuoguP3147」262144(区间dp
P3147 [USACO16OPEN]262144 题目描述 Bessie likes downloading games to play on her cell phone, even though ...
- 【笔记】区间DP
记录一些基础的区间 \(\text{DP}\) 题. 0x00 AT_dp_n N - Slimes 最板的区间 \(\text{DP}\) . 记 \(f[i][j]\) 表示合并 \(i\sim ...
- 又一道区间DP的题 -- P3146 [USACO16OPEN]248
https://www.luogu.org/problemnew/show/P3146 一道区间dp的题,以区间长度为阶段; 但由于要处理相邻的问题,就变得有点麻烦; 最开始想了一个我知道有漏洞的方程 ...
- 【bzoj4580】[Usaco2016 Open]248 区间dp
题目描述 Bessie likes downloading games to play on her cell phone, even though she does find the small t ...
- 【动态规划DP】[USACO16OPEN]248
题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small to ...
- 一道另类的区间dp题 -- P3147 [USACO16OPEN]262144
https://www.luogu.org/problemnew/show/P3147 此题与上一题完全一样,唯一不一样的就是数据范围; 上一题是248,而这一题是262144; 普通的区间dp表示状 ...
随机推荐
- java实现第六届蓝桥杯九数组分数
九数组分数 九数组分数 1,2,3...9 这九个数字组成一个分数,其值恰好为1/3,如何组法? 下面的程序实现了该功能,请填写划线部分缺失的代码. public class A { public s ...
- java实现第五届蓝桥杯圆周率
圆周率 数学发展历史上,圆周率的计算曾有许多有趣甚至是传奇的故事.其中许多方法都涉及无穷级数. 图1.png中所示,就是一种用连分数的形式表示的圆周率求法. 下面的程序实现了该求解方法.实际上数列的收 ...
- STL中的set和multiset
注意: 1.count() 常用来判断set中某元素是否存在,因为一个键值在set只可能出现0或1次. 2.erase()用法 erase(iterator) ,删除定位器iterator指向的值 ...
- 小程序scroll-view实现回到顶部
一.wxml页面:catchtap阻止冒泡事件. <view class="gotop" hidden='{{!cangotop}}'catchtap="goTop ...
- PyQt中QThread多线程的正确用法【待完善】
先贴几篇有意思的讨论 https://www.qt.io/blog/2010/06/17/youre-doing-it-wrong#commento-login-box-container https ...
- Excel常用公式大全
公式是单个或多个函数的结合运用. AND “与”运算,返回逻辑值,仅当有参数的结果均为逻辑“真(TRUE)”时返回逻辑“真(TRUE)”,反之返回逻辑“假(FALSE)”. 条件判断 AVERAGE ...
- (十一)Maven之profile实现多环境配置动态切换
原文链接:https://www.cnblogs.com/zeng1994/p/a442108012ffd6a97b22c63055b48fe9.html 一.多环境配置文件的放置 将不同环境下的配 ...
- Jlink设置正确,但下载程序失败
[图中reset and run]勾选后即每次·下载程序后会自动复位,不需要再在硬件上进行复位 各参数设置正确 但依然下载失败. 原因是需要重新再编译一次,因为上次设置错误,编译后目标未创建! 重新编 ...
- Android学习笔记Tab代替ActionBar做的顶部导航
1.先准备5个Fragement作为标签页 package com.lzp.youdaotab; import android.os.Bundle; import android.view.Layou ...
- windbg分析一次大查询导致的内存暴涨
项目上反馈了一个问题,就是在生产环境上,用户正常使用的过程中,出现了服务器内存突然暴涨,客户有点慌,想找下原因. 讲道理,内存如果是缓慢上涨一直不释放的话,应该是存在内存泄漏的,这种排查起来比较困难, ...