K近邻算法(一)
K 近邻算法思想:
寻找该点周围最近的K个点。根据这K 个点的类别来判断该点的类别;
核心: 数据归一化。(在必要的时候必须进行数据归一化处理,防止某一特征在计算数据时占比较重)
计算欧拉距离 。 使用python中 np的向量相减后的平方再开根号
distances = []
for x_train in X_train:
d = sqrt(np.sum((x_train - x) ** 2))
distances.append(d)
或
distances = [sqrt(np.sum((x_train-x)**2)) for x_train in X_train]
比较欧拉距离。 获取距离由近到远的索引下标:
nearest = np.argsort(distances) #返回的是从小到大的对应索引
选择K个最近的,并统计类型。
topK_y = [y_train[i] for i in nearest[:k]] #选前k个
c = Counter(topK_y) #统计类型
print(c.most_common(1)[0][0]) #输出计数最高的那个元组中的值
K近邻算法(一)的更多相关文章
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- k近邻算法的Java实现
k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- k近邻算法
k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定. ...
- KNN K~近邻算法笔记
K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- [机器学习] k近邻算法
算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...
随机推荐
- Docker-教你如何通过 Docker 快速搭建各种测试环境
今天给大家分享的主题是,如何通过 Docker 快速搭建各种测试环境,本文列举的,也是作者在工作中经常用到的,其中包括 MySQL.Redis.Elasticsearch.MongoDB 安装步骤,通 ...
- Docker镜像-拉取并且运行
1.docker search : 从Docker Hub查找镜像 docker search [OPTIONS] 镜像名 OPTIONS说明: --automated :只列出 automated ...
- JAVA服务实例内存高问题排查及解决
生产服务内存高问题 问题描述 1."计算中心" 服务在生产环境运行一段时间后,实际占用内存4.8G,业务运行正常,未出现OOM.(本文以此服务进行排查) 2.生产环境的老项目,均出 ...
- Mac系统权限打开与关闭
打开系统权限: 关闭mac command+R重启 菜单中找到终端 输入命令:csrutil enable 关闭系统权限: 重复以上1-3步骤,第4步时输入:csrutil disable
- Scala 基础(十五):Scala 模式匹配(三)
1 变量声明中的模式 match中每一个case都可以单独提取出来,意思是一样的. 应用案例 val (x, y) = (1, 2) val (q, r) = BigInt(10) /% 3 //说明 ...
- JVM 专题六:运行时数据区(一)概述
1. 运行时数据区架构图 2. 内存 内存是非常重要的系统资源,是硬盘和cpu的中间仓库及桥梁,承载着操作系统和应用程序的实时运行.JVM内存布局规定了JAVA在运行过程中内存申请.分配.管理的策略, ...
- java 面向对象(三十九):反射(三)了解ClassLoader
1.类的加载过程----了解 2.类的加载器的作用 3.类的加载器的分类 4.Java类编译.运行的执行的流程 5.使用Classloader加载src目录下的配置文件 @Test public vo ...
- Python之迭代器、装饰器、软件开发规范
本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...
- Mariadb之主从复制的读写分离
首先我们来回顾下代理的概念,所谓代理就是指的是一端面向客户端,另外一端面向服务端,代理客户端访问服务端,我们把这种代理叫正向代理:代理服务端响应客户端我们叫做反向代理,这个我们在之前nginx系列博客 ...
- TCP 和 UDP,哪个更胜一筹
作为 TCP/IP 中两个最具有代表性的传输层协议,TCP 和 UDP 经常被拿出来相互比较.这些协议具体有什么区别,又是什么作用呢? 在 IT 圈混迹多年的小伙伴们,对 TCP 和 UDP 肯定再熟 ...