SparkSQL访问Hive源,MySQL源
SparkSQL访问Hive源,MySQL源
作者:黑暗行动
一、SparkSQL访问Hive源
软件环境
hadoop2.7.6
spark-2.3.0
scala-2.11.12
hive-2.1.1
SparkSQL命令行模式可以直接连接Hive的
将hive目录中的 D:\Soft\apache-hive-2.1.1-bin\conf\hive-site.xml 文件拷贝贝到 D:\Soft\spark\conf spark目录中
D:\soft\spark\jars 目录中放 mysql-connector-java-5.1.30.jar 包
Java程序SparkSQL连接Hive
1)将hive目录中的 D:\Soft\apache-hive-2.1.1-bin\conf\hive-site.xml 文件拷贝到 \src\main\resources 资源目录中
2)添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.3.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.30</version>
</dependency>
3) 创建SparkSession
/**
* SparkSession
* 支持数据源:hive
* @return
*/
public static SparkSession getSparkSessionForHive() {
return SparkSession
.builder()
.appName("SparkSQLForHive")
.master("local[*]")
.enableHiveSupport()
.getOrCreate();
}
- 测试代码
public static void main(String[] args) {
SparkSession spark = SparkUtil.getSparkSessionForHive();
spark.sql("show tables").show();
spark.sql("select * from test1").show();
}
- 运行结果
18/11/18 22:36:44 INFO CodeGenerator: Code generated in 234.231366 ms
18/11/18 22:36:44 INFO CodeGenerator: Code generated in 11.285122 ms
+--------+--------------+-----------+
|database| tableName|isTemporary|
+--------+--------------+-----------+
| default|bucket_persion| false|
| default| bucket_temp| false|
| default| hdfs1| false|
| default| hdfs2| false|
| default| pt1| false|
| default| tbcsv1| false|
| default| tbcsv2| false|
| default| test1| false|
| default| test_table_2| false|
+--------+--------------+-----------+
.........
18/11/18 22:36:46 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1346 bytes result sent to driver
18/11/18 22:36:46 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 237 ms on localhost (executor driver) (1/1)
18/11/18 22:36:46 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/11/18 22:36:46 INFO DAGScheduler: ResultStage 0 (show at redHive.java:14) finished in 0.313 s
18/11/18 22:36:46 INFO DAGScheduler: Job 0 finished: show at redHive.java:14, took 0.352593 s
+-------+---+-------+------+
| name|age|address|school|
+-------+---+-------+------+
| chy| 1| 芜湖| 示范|
| zjj| 2| 南京| 南开|
|gaoxing| 3| 马鞍山| 安工大|
+-------+---+-------+------+
18/11/18 22:36:46 INFO SparkContext: Invoking stop() from shutdown hook
二、SparkSQL访问MySql源
Spark环境
spark-2.3.0
添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.22</version>
</dependency>
创建SparkSession
/**
* SparkSession
* 支持数据源:textFile,load,csv,json,text,format,jdbc
* @return
*/
public static SparkSession getSparkSession() {
return SparkSession
.builder()
.appName("SparkSQL")
.master("local[*]")
.getOrCreate();
}
访问Mysql方式1:
public static void test(){
String url="jdbc:mysql://localhost:3306/sparksql?user=root&password=123456";
String tableName="users";
SparkSession spark= SparkUtil.getSparkSession();
Map<String,String> map=new HashMap<>();
map.put("driver","com.mysql.jdbc.Driver");
map.put("url",url);
map.put("dbtable",tableName);
map.put("fetchSize","100");
//读取users信息
Dataset<Row> jdbcDF = spark.read()
.format("jdbc")
.options(map)
.load();
//读取users信息,保存到users_copy表
jdbcDF.write()
.format("jdbc")
.option("url", url)
.option("dbtable", "users_copy")
.save();
}
访问Mysql方式2:
public static void test2(){
String url="jdbc:mysql://localhost:3306/sparksql";
String tempTableName=" (select id,name from users) as u";
SparkSession spark= SparkUtil.getSparkSession();
Properties connectionProperties = new Properties();
connectionProperties.put("user", "root");
connectionProperties.put("password", "123456");
connectionProperties.put("isolationLevel","REPEATABLE_READ");
//读取users信息
Dataset<Row> jdbcDF2 = spark.read()
.jdbc(url, tempTableName, connectionProperties);
//读取users信息,保存到users1表
jdbcDF2.write()
.jdbc(url, "users1", connectionProperties);
}
SparkSQL访问Hive源,MySQL源的更多相关文章
- spark on yarn模式下配置spark-sql访问hive元数据
spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...
- spark-sql访问hive的问题记录
好久没有弄博客了... hive0.14 spark0.12 [hadoop@irs bin]$ ./spark-sql Spark assembly has been built with Hive ...
- SparkSQL On Yarn with Hive,操作和访问Hive表
转载自:http://lxw1234.com/archives/2015/08/466.htm 本文将介绍以yarn-cluster模式运行SparkSQL应用程序,访问和操作Hive中的表,这个和在 ...
- MySQL源码分析以及目录结构 2
原文地址:MySQL源码分析以及目录结构作者:jacky民工 主要模块及数据流经过多年的发展,mysql的主要模块已经稳定,基本不会有大的修改.本文将对MySQL的整体架构及重要目录进行讲述. 源码结 ...
- MySQL源码分析以及目录结构
原文地址:MySQL源码分析以及目录结构作者:jacky民工 主要模块及数据流经过多年的发展,mysql的主要模块已经稳定,基本不会有大的修改.本文将对MySQL的整体架构及重要目录进行讲述. 源码结 ...
- mysql源码编译安装
首先去官网http://dev.mysql.com/downloads/mysql/ 下载mysql源码.我下的是5.7.10 源码选择的是 Generic Linux (Architecture I ...
- MySQL源码解析之执行计划
MySQL源码解析之执行计划 MySQL执行计划介绍 MySQL执行计划代码概览 MySQL执行计划总结 一.MySQL执行计划介绍 在MySQL中,执行计划的实现是基于JOIN和QEP_TAB这两个 ...
- mysql源码解读之配置文件
要研究mysql,最好的资源莫过于源码了,所以本人打算通过调试源码的方式来深入理解mysql的点点滴滴.搭建mysql调试环境很简单,从官方下载mysql源码,利用cmake工具生成工程即可.为了方便 ...
- Mysql源码分析--csv存储引擎
一直想分析下mysql的源码,开始的时候不知道从哪下手,先从csv的文件存储开始吧,这个还是比较简单的.我是用的是mysql5.7.16版本的源码. csv源码文件在mysql源码的mysql-5.7 ...
随机推荐
- centosl7简洁版配置
生产环境安装了精简版的centos7需要进行相关配置,添加相关组件才能更好的使用! 由于不同的安装方式欠缺的组件不尽相同,本例尽可能满足一般的生产环境的需要!!! 一.安装ifconfig服务 在没有 ...
- golang unsafe.Pointer与uintptr
原文地址:https://blog.fanscore.cn/p/33/ 先说结论 uintptr 是一个地址数值,它不是指针,与地址上的对象没有引用关系,垃圾回收器不会因为有一个uintptr类型的值 ...
- 学习笔记之Python人机交互小项目二:名片管理系统
继上次利用列表相关知识做了简单的人机交互的小项目名字管理系统后,当学习到字典时,老师又让我们结合列表和字典的知识,结合一起做一个名片管理系统,这里分享给在学习Python的伙伴! 1.不使用函数 1 ...
- Linux 设置静态IP
由于工作需要,安装一套Linux系统.安装完成后发现这个家伙居然不能上网,然后看了下IP,(命令 ip a)发现是127.0.0.1 下面是我的界面: inet 是127.0.0.1/8 还有6个网卡 ...
- FastAPI学习: 个人博客的后端API
前言 学习FastAPI中把官方文档过了一遍,看了些大佬的文章,也借鉴(抄袭)了部分代码,写了一套个人博客的API,目前还比较简陋,统计的API基本没有,而且目前基本都停留在单表查询,所以含量不高,接 ...
- 实现一个简单的 Linux Shell(C++)
Implement a simple command interpreter in Linux. The interpreter should: support both internal and e ...
- SDUST数据结构 - chap7 图
判断题: 选择题: 函数题: 6-1 邻接矩阵存储图的深度优先遍历: 裁判测试程序样例: #include <stdio.h> typedef enum {false, true} boo ...
- SAP表的锁定与解锁
表的锁定模式有三种模式. lock mode有三种模式:分别是S,E,X.含义如下: S (Shared lock, read lock) E (Exclusive lock, wri ...
- 注解 @AutoConfigureBefore 和 @AutoConfigureAfter 的用途
注解 @AutoConfigureBefore 和 @AutoConfigureAfter 的用途 介绍: 如果你想将在SpringBoot项目中的配置类进行排序,那么用到spring-boot-au ...
- centos&linux
who am i 查看是哪一个用户 init 0关机 ifconfig用于配置网络或显示当前网络接口的状态 eth0是网卡的名字 第一行:flags后面的up指的是网卡处于运行状态,running连接 ...