论文

Belghazi, Mohamed Ishmael, et al. “ Mutual information neural estimation .”  International Conference on Machine Learning . 2018.

利用神经网络的梯度下降法可以实现快速高维连续随机变量之间互信息的估计,上述论文提出了Mutual Information Neural Estimator (MINE)。NN在维度和样本量上都是线性可伸缩的,MI的计算可以通过反向传播进行训练。

核心

Python实现

现有github上的代码无法计算和估计高维随机变量,只能计算一维随机变量,下面的代码给出的修改方案能够计算真实和估计高维随机变量的真实互信息。

其中,为了计算理论的真实互信息,我们不直接暴力求解矩阵(耗时,这也是为什么要有MINE的原因),我们采用给定生成随机变量的参数计算理论互信息。

SIGNAL_NOISE = 0.2
SIGNAL_POWER = 3

完整代码基于pytorch

# Name: MINE_simple
# Author: Reacubeth
# Time: 2020/12/15 18:49
# Mail: noverfitting@gmail.com
# Site: www.omegaxyz.com
# *_*coding:utf-8 *_*
 
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
import matplotlib.pyplot as plt
 
 
SIGNAL_NOISE = 0.2
SIGNAL_POWER = 3
 
data_dim = 3
num_instances = 20000
 
 
def gen_x(num, dim):
    return np.random.normal(0., np.sqrt(SIGNAL_POWER), [num, dim])
 
 
def gen_y(x, num, dim):
    return x + np.random.normal(0., np.sqrt(SIGNAL_NOISE), [num, dim])
 
 
def true_mi(power, noise, dim):
    return dim * 0.5 * np.log2(1 + power/noise)
 
 
mi = true_mi(SIGNAL_POWER, SIGNAL_NOISE, data_dim)
print('True MI:', mi)
 
 
hidden_size = 10
n_epoch = 500
 
 
class MINE(nn.Module):
    def __init__(self, hidden_size=10):
        super(MINE, self).__init__()
        self.layers = nn.Sequential(nn.Linear(2 * data_dim, hidden_size),
                                    nn.ReLU(),
                                    nn.Linear(hidden_size, 1))
 
    def forward(self, x, y):
        batch_size = x.size(0)
        tiled_x = torch.cat([x, x, ], dim=0)
        idx = torch.randperm(batch_size)
 
        shuffled_y = y[idx]
        concat_y = torch.cat([y, shuffled_y], dim=0)
        inputs = torch.cat([tiled_x, concat_y], dim=1)
        logits = self.layers(inputs)
 
        pred_xy = logits[:batch_size]
        pred_x_y = logits[batch_size:]
        loss = - np.log2(np.exp(1)) * (torch.mean(pred_xy) - torch.log(torch.mean(torch.exp(pred_x_y))))
        # compute loss, you'd better scale exp to bit
        return loss
 
 
model = MINE(hidden_size)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
plot_loss = []
all_mi = []
for epoch in tqdm(range(n_epoch)):
    x_sample = gen_x(num_instances, data_dim)
    y_sample = gen_y(x_sample, num_instances, data_dim)
 
    x_sample = torch.from_numpy(x_sample).float()
    y_sample = torch.from_numpy(y_sample).float()
 
    loss = model(x_sample, y_sample)
 
    model.zero_grad()
    loss.backward()
    optimizer.step()
    all_mi.append(-loss.item())
 
 
fig, ax = plt.subplots()
ax.plot(range(len(all_mi)), all_mi, label='MINE Estimate')
ax.plot([0, len(all_mi)], [mi, mi], label='True Mutual Information')
ax.set_xlabel('training steps')
ax.legend(loc='best')
plt.show()

结果

变量维度为1

变量维度为3

需要指出的是在计算最终的互信息时需要将基数e转为基数2。如果只是求得一个比较值,在真实使用的过程中可以省略。

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理

想要获取更多Python学习资料可以加
QQ:2955637827私聊
或加Q群630390733
大家一起来学习讨论吧!

神经网络高维互信息计算Python实现(MINE)的更多相关文章

  1. 基于神经网络的混合计算(DNC)-Hybrid computing using a NN with dynamic external memory

    前言: DNC可以称为NTM的进一步发展,希望先看看这篇译文,关于NTM的译文:人工机器-NTM-Neutral Turing Machine 基于神经网络的混合计算 Hybrid computing ...

  2. 北京地铁月度消费总金额计算(Python版)

    最近业余时间在学习Python,这是那天坐地铁时突发奇想,想看看我这一个月的地铁费共多少钱,所以简单的构思了下思路,就直接开写了,没想到用Python来实现还挺简单的. 设计思路: 每次乘车正常消费7 ...

  3. 函数计算 Python 连接 SQL Server 小结

    python 连接数据库通常要安装第三方模块,连接 MS SQL Server 需要安装 pymssql .由于 pymsql 依赖于 FreeTDS,对于先于 2.1.3 版本的 pymssql,需 ...

  4. GIL计算python 2 和 python 3 计算密集型

    首先我画了一张图来表示GIL运行的方式: Python 3执行如下计算代码:#-*-conding:utf-8-*-import threading import timedef add(): n = ...

  5. 计算Python运行时间

    可以调用datetime 或者 time库实现得到Python运行时间 方法1 import datetime start_t  = datetime.datetime.now() #运行大型代码 e ...

  6. 机器学习作业(四)神经网络参数的拟合——Python(numpy)实现

    题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 出现了一个问题:虽然训练的模型能够有很好的预测准确率,但是使用minimize函数时候始终无法成功,无论设计的迭代次数有多大,如 ...

  7. 相似度与距离计算python代码实现

    #定义几种距离计算函数 #更高效的方式为把得分向量化之后使用scipy中定义的distance方法 from math import sqrt def euclidean_dis(rating1, r ...

  8. 计算Python代码运行时间长度方法

    在代码中有时要计算某部分代码运行时间,便于分析. import time start = time.clock() run_function() end = time.clock() print st ...

  9. 菜鸟之路——机器学习之BP神经网络个人理解及Python实现

    关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时 ...

随机推荐

  1. 「CEOI2013」Board

    description 洛谷P5513 solution 用一个二进制数维护这个节点所处的位置,那么"1"操作就是这个数\(*2\),"2"操作就是这个数\(* ...

  2. [配置]01.IntelliJ IDEA代码格式化与Eclipse保持风格一致

  3. 牛客练习赛66 C公因子 题解(区间gcd)

    题目链接 题目大意 给你一个长为n的数组,给所有数组元素加上一个非负整数x,使得这个数组的所有元素的gcd最大 题目思路 这主要是设计到一个多个数gcd的性质 gcd(a,b,c,d.....)=gc ...

  4. 关于uniapp无法navigateTo跳转的解决办法

    今天在分包时突然无法跳转了,记个笔记 场景: 位于tabbar页面(主包)的子组件跳转到分包页面时,无法跳转 尝试办法: 使用uniapp原生跳转 uni.navigateTo({ url:'xxxx ...

  5. Pytest学习(十二)-生成HTML报告插件之pytest-html的使用

    环境前提 Python3.6+ 安装插件 pip3 install pytest-html -i http://pypi.douban.com/simple/ --trusted-host pypi. ...

  6. 区块链V1版本实现之四

    部分程序代码(添加区块): //添加区块 func (bc *BlockChain) AddBlock(data string) { //创建一个区块 //bc.Block的最后一个区块的Hash值就 ...

  7. 微软面试题: LeetCode 151. 翻转字符串里的单词 出现次数:6

    题目描述: 给定一个字符串,逐个翻转字符串中的每个单词. 说明: 无空格字符构成一个 单词 .输入字符串可以在前面或者后面包含多余的空格,但是反转后的字符不能包括.如果两个单词间有多余的空格,将反转后 ...

  8. Python中定义文档字符串__doc__需要注意格式对齐的处理

    Python中的文档字符串是个很不错的提升代码交付质量.编写文档方便的特征,但是需要注意在使用文档字符串时,将文档字符串标识的引号对必须遵守缩进的规则,否则Python语法检查时会无法通过,而引号内的 ...

  9. PyQt(Python+Qt)学习随笔:QListWidget查找项的findItems方法

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 QListWidget列表部件的findItems方法用于查找列表部件是否有满足条件的项,调用语法如 ...

  10. PyQt学习随笔:Qt中Model/View中的怎么构造View匹配的Model

    老猿Python博文目录 老猿Python博客地址 在<PyQt学习随笔:Qt中Model/View相关的主要类及继承关系>介绍了Model/View架构的主要类,在实际使用时,view相 ...