ARM-Linux S5PV210 UART驱动(转)
ARM-Linux S5PV210 UART驱动(3)----串口核心层、关键结构体、接口关系
尽管一个特定的UART设备驱动完全可以按照tty驱动的设计方法来设计,即定义tty_driver并实现tty_operations其中的成员函数,但是Linux已经在文件serial_core.c中实现了UART设备的通用tty驱动层,称为串口核心层,这样,UART驱动的主要任务变成了实现serial_core.c中定义的一组uart_xxx接口而非tty_xxx接口。
1.下图描述了串行系统间的层次结构关系,可以概括为:用户应用层 --> 线路规划层 --> TTY层 --> 底层驱动层 --> 物理硬件层

2.下图是串口核心层在整个tty源文件关系及数据流向中的位置:

其中的xxx_uart.c在此处就是drivers/serial/samsung.c和s5pv210.c
3.接口关系:

从接口关系图可以看出,用户对uart设备操作的调用关系非常简单,
file_operations => [tty_ldisc_ops] => tty_operations => uart ops
其中tty_ldisc_ops线路规程并不是必要的,依赖于应用层设置是否使用ldisc处理数据。
4.UART驱动的总图:

5.uart驱动常用的数据结构表示如下:

6.Uart驱动程序主要围绕三个关键的数据结构展开(include/linux/serial_core.h中定义):
UART特定的驱动程序结构定义:struct uart_driver s3c24xx_uart_drv;
UART端口结构定义: struct s3c24xx_uart_port s3c24xx_serial_ports;
UART相关操作函数结构定义: struct uart_ops s3c24xx_serial_ops;
【1】uart_driver 封装了tty_driver,使得底层的UART驱动无需关心tty_driver

struct uart_driver {
    struct module        *owner;
    const char        *driver_name;
    const char        *dev_name;
    int             major;
    int             minor;
    int             nr;
    struct console        *cons;
    /*
     * these are private; the low level driver should not
     * touch these; they should be initialised to NULL
     */
    struct uart_state    *state;
    struct tty_driver    *tty_driver;
};

其中的uart_state是设备私有信息结构体,
在uart_open()中:
tty->driver_data = state;
在其他uart_xxx()中:
struct uart_state *state = tty->driver_data;
就可以获取设备私有信息结构体。

static struct uart_driver s3c24xx_uart_drv= {
      .owner           =THIS_MODULE,
      .dev_name      = "s3c2440_serial",  //具体设备名称
      .nr          =CONFIG_SERIAL_SAMSUNG_UARTS,  //定义有几个端口
      .cons             = S3C24XX_SERIAL_CONSOLE,  //console接口
       .driver_name  =S3C24XX_SERIAL_NAME,  //串口名:ttySAC
      .major            =S3C24XX_SERIAL_MAJOR,  //主设备号
      .minor            =S3C24XX_SERIAL_MINOR,   //次设备号
};

一个tty驱动必须注册/注销tty_driver,而一个UART驱动则变为注册/注销uart_driver,使用如下接口:
int uart_register_driver(struct uart_driver *drv);
void uart_unregister_driver(struct uart_driver *drv);
【2】uart_port用于描述一个UART端口(直接对应于一个串口)的I/O端口或者IO内存地址等信息。

struct uart_port {
    spinlock_t        lock;            /* port lock */
    unsigned long        iobase;            /* in/out[bwl] */
    unsigned char __iomem    *membase;        /* read/write[bwl] */
    unsigned int        (*serial_in)(struct uart_port *, int);
    void            (*serial_out)(struct uart_port *, int, int);
    unsigned int        irq;            /* irq number */
    unsigned long        irqflags;        /* irq flags  */
    unsigned int        uartclk;        /* base uart clock */
    unsigned int        fifosize;        /* tx fifo size */
    unsigned char        x_char;            /* xon/xoff char */
    unsigned char        regshift;        /* reg offset shift */
    unsigned char        iotype;            /* io access style */
    unsigned char        unused1;
#define UPIO_PORT        (0)
#define UPIO_HUB6        (1)
#define UPIO_MEM        (2)
#define UPIO_MEM32        (3)
#define UPIO_AU            (4)            /* Au1x00 type IO */
#define UPIO_TSI        (5)            /* Tsi108/109 type IO */
#define UPIO_DWAPB        (6)            /* DesignWare APB UART */
#define UPIO_RM9000        (7)            /* RM9000 type IO */
    unsigned int        read_status_mask;    /* driver specific */
    unsigned int        ignore_status_mask;    /* driver specific */
    struct uart_state    *state;            /* pointer to parent state */
    struct uart_icount    icount;            /* statistics */
    struct console        *cons;            /* struct console, if any */
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(SUPPORT_SYSRQ)
    unsigned long        sysrq;            /* sysrq timeout */
#endif
    upf_t            flags;
#define UPF_FOURPORT        ((__force upf_t) (1 << 1))
#define UPF_SAK            ((__force upf_t) (1 << 2))
#define UPF_SPD_MASK        ((__force upf_t) (0x1030))
#define UPF_SPD_HI        ((__force upf_t) (0x0010))
#define UPF_SPD_VHI        ((__force upf_t) (0x0020))
#define UPF_SPD_CUST        ((__force upf_t) (0x0030))
#define UPF_SPD_SHI        ((__force upf_t) (0x1000))
#define UPF_SPD_WARP        ((__force upf_t) (0x1010))
#define UPF_SKIP_TEST        ((__force upf_t) (1 << 6))
#define UPF_AUTO_IRQ        ((__force upf_t) (1 << 7))
#define UPF_HARDPPS_CD        ((__force upf_t) (1 << 11))
#define UPF_LOW_LATENCY        ((__force upf_t) (1 << 13))
#define UPF_BUGGY_UART        ((__force upf_t) (1 << 14))
#define UPF_NO_TXEN_TEST    ((__force upf_t) (1 << 15))
#define UPF_MAGIC_MULTIPLIER    ((__force upf_t) (1 << 16))
#define UPF_CONS_FLOW        ((__force upf_t) (1 << 23))
#define UPF_SHARE_IRQ        ((__force upf_t) (1 << 24))
/* The exact UART type is known and should not be probed.  */
#define UPF_FIXED_TYPE        ((__force upf_t) (1 << 27))
#define UPF_BOOT_AUTOCONF    ((__force upf_t) (1 << 28))
#define UPF_FIXED_PORT        ((__force upf_t) (1 << 29))
#define UPF_DEAD        ((__force upf_t) (1 << 30))
#define UPF_IOREMAP        ((__force upf_t) (1 << 31))
#define UPF_CHANGE_MASK        ((__force upf_t) (0x17fff))
#define UPF_USR_MASK        ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))
    unsigned int        mctrl;            /* current modem ctrl settings */
    unsigned int        timeout;        /* character-based timeout */
    unsigned int        type;            /* port type */
    const struct uart_ops    *ops;//UART操作集------->
    unsigned int        custom_divisor;
    unsigned int        line;            /* port index */
    resource_size_t        mapbase;        /* for ioremap */
    struct device        *dev;            /* parent device */
    unsigned char        hub6;            /* this should be in the 8250 driver */
    unsigned char        suspended;
    unsigned char        unused[2];
    void            *private_data;        /* generic platform data pointer */
};

s3c24xx_uart_port 封装了uart_port:

struct s3c24xx_uart_port {
    unsigned char            rx_claimed;
    unsigned char            tx_claimed;
    unsigned int            pm_level;
    unsigned long            baudclk_rate;
    unsigned int            rx_irq;
    unsigned int            tx_irq;
    struct s3c24xx_uart_info    *info;
    struct s3c24xx_uart_clksrc    *clksrc;
    struct clk            *clk;
    struct clk            *baudclk;
    struct uart_port        port;
#ifdef CONFIG_CPU_FREQ
    struct notifier_block        freq_transition;
#endif
    int                channelnum;
};


static struct s3c24xx_uart_port
s3c24xx_serial_ports[CONFIG_SERIAL_SAMSUNG_UARTS] = {
[0] = {//串口0;
.port = {
.lock = __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[0].port.lock),
.iotype = UPIO_MEM,
.irq = IRQ_S3CUART_RX0,
.uartclk = 0,
.fifosize = 16,//定义FIFO缓存区大小
.ops = &s3c24xx_serial_ops,//串口相关操作函数
.flags = UPF_BOOT_AUTOCONF,
.line = 0,//线路
}
},
[1] = {//串口1;
.port = {
.lock = __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[1].port.lock),
.iotype = UPIO_MEM,
.irq = IRQ_S3CUART_RX1,
.uartclk = 0,
.fifosize = 16,
.ops = &s3c24xx_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 1,
}
},
#if CONFIG_SERIAL_SAMSUNG_UARTS > 2 [2] = {
.port = {
.lock = __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[2].port.lock),
.iotype = UPIO_MEM,
.irq = IRQ_S3CUART_RX2,
.uartclk = 0,
.fifosize = 16,
.ops = &s3c24xx_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 2,
}
},
#endif
#if CONFIG_SERIAL_SAMSUNG_UARTS > 3
[3] = {
.port = {
.lock = __SPIN_LOCK_UNLOCKED(s3c24xx_serial_ports[3].port.lock),
.iotype = UPIO_MEM,
.irq = IRQ_S3CUART_RX3,
.uartclk = 0,
.fifosize = 16,
.ops = &s3c24xx_serial_ops,
.flags = UPF_BOOT_AUTOCONF,
.line = 3,
}
}
#endif
};

在xxx_probe()中:
struct s3c24xx_uart_port *ourport;//s3c24xx_uart_port封装了uart_port
ourport = &s3c24xx_serial_ports[dev->id];//s3c24xx_serial_ports是s3c24xx_uart_port结构体类型的
【3】uart_ops定义了针对UART的一系列操作,

/*
* This structure describes all the operations that can be
* done on the physical hardware.
*/
struct uart_ops {
unsigned int (*tx_empty)(struct uart_port *);
void (*set_mctrl)(struct uart_port *, unsigned int mctrl);
unsigned int (*get_mctrl)(struct uart_port *);
void (*stop_tx)(struct uart_port *);
void (*start_tx)(struct uart_port *);
void (*send_xchar)(struct uart_port *, char ch);
void (*stop_rx)(struct uart_port *);
void (*enable_ms)(struct uart_port *);
void (*break_ctl)(struct uart_port *, int ctl);
int (*startup)(struct uart_port *);
void (*shutdown)(struct uart_port *);
void (*flush_buffer)(struct uart_port *);
void (*set_termios)(struct uart_port *, struct ktermios *new,
struct ktermios *old);
void (*set_ldisc)(struct uart_port *);
void (*pm)(struct uart_port *, unsigned int state,
unsigned int oldstate);
int (*set_wake)(struct uart_port *, unsigned int state);
void (*wake_peer)(struct uart_port *); /*
* Return a string describing the type of the port
*/
const char *(*type)(struct uart_port *); /*
* Release IO and memory resources used by the port.
* This includes iounmap if necessary.
*/
void (*release_port)(struct uart_port *); /*
* Request IO and memory resources used by the port.
* This includes iomapping the port if necessary.
*/
int (*request_port)(struct uart_port *);
void (*config_port)(struct uart_port *, int);
int (*verify_port)(struct uart_port *, struct serial_struct *);
int (*ioctl)(struct uart_port *, unsigned int, unsigned long);
#ifdef CONFIG_CONSOLE_POLL
void (*poll_put_char)(struct uart_port *, unsigned char);
int (*poll_get_char)(struct uart_port *);
#endif
};


//一般来说,实现下面的成员函数是UART驱动的主体工作
static struct uart_ops s3c24xx_serial_ops ={
.pm =s3c24xx_serial_pm, //电源管理函数
.tx_empty = s3c24xx_serial_tx_empty, //检车发送FIFO缓冲区是否空
.get_mctrl = s3c24xx_serial_get_mctrl, //是否串口流控
.set_mctrl = s3c24xx_serial_set_mctrl, //是否设置串口流控cts
.stop_tx =s3c24xx_serial_stop_tx, //停止发送
.start_tx =s3c24xx_serial_start_tx, //启动发送
.stop_rx =s3c24xx_serial_stop_rx, //停止接收
.enable_ms = s3c24xx_serial_enable_ms, //空函数
.break_ctl = s3c24xx_serial_break_ctl, //发送break信号
.startup =s3c24xx_serial_startup, //串口发送/接收,以及中断申请初始配置函数
.shutdown = s3c24xx_serial_shutdown, //关闭串口
.set_termios = s3c24xx_serial_set_termios,//串口clk,波特率,数据位等参数设置
.type = s3c24xx_serial_type, // CPU类型关于串口
.release_port =s3c24xx_serial_release_port, //释放串口
.request_port =s3c24xx_serial_request_port, //申请串口
.config_port = s3c24xx_serial_config_port, //串口的一些配置信息info
.verify_port = s3c24xx_serial_verify_port, //串口检测
.wake_peer = s3c24xx_serial_wake_peer,
};

而在serial_core.c中定义了tty_operations的实例,包含uart_open();uart_close();uart_send_xchar()等成员函数,这些函数借助uart_ops结构体中的成员函数来完成具体的操作。

static const struct tty_operations uart_ops = {
    .open        = uart_open,
    .close        = uart_close,
    .write        = uart_write,
    .put_char    = uart_put_char,
    .flush_chars    = uart_flush_chars,
    .write_room    = uart_write_room,
    .chars_in_buffer= uart_chars_in_buffer,
    .flush_buffer    = uart_flush_buffer,
    .ioctl        = uart_ioctl,
    .throttle    = uart_throttle,
    .unthrottle    = uart_unthrottle,
    .send_xchar    = uart_send_xchar,
    .set_termios    = uart_set_termios,
    .set_ldisc    = uart_set_ldisc,
    .stop        = uart_stop,
    .start        = uart_start,
    .hangup        = uart_hangup,
    .break_ctl    = uart_break_ctl,
    .wait_until_sent= uart_wait_until_sent,
#ifdef CONFIG_PROC_FS
    .proc_fops    = &uart_proc_fops,
#endif
    .tiocmget    = uart_tiocmget,
    .tiocmset    = uart_tiocmset,
#ifdef CONFIG_CONSOLE_POLL
    .poll_init    = uart_poll_init,
    .poll_get_char    = uart_poll_get_char,
    .poll_put_char    = uart_poll_put_char,
#endif
};

从下面的例子中可以看出串口核心层的tty_operations与uart_ops的关系:

/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void uart_send_xchar(struct tty_struct *tty, char ch)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port = state->uart_port;
unsigned long flags; if (port->ops->send_xchar)/*如果uart_ops中实现了send_xchar成员函数*/
port->ops->send_xchar(port, ch);
else {
port->x_char = ch;
if (ch) {
spin_lock_irqsave(&port->lock, flags);
port->ops->start_tx(port);
spin_unlock_irqrestore(&port->lock, flags);
}
}
}

这个例子的调用关系如下:
send_xchar ----> uart_send_xchar ----> start_tx ---> s3c24xx_serial_start_tx
ARM-Linux S5PV210 UART驱动(转)的更多相关文章
- ARM-Linux S5PV210 UART驱动(4)----串口驱动初始化过程
		对于S5PV210 UART驱动来说,主要关心的就是drivers/serial下的samsung.c和s5pv210.c连个文件. 由drivers/serial/Kconfig: config S ... 
- ARM-Linux S5PV210 UART驱动(3)----串口核心层、关键结构体、接口关系
		尽管一个特定的UART设备驱动完全可以按照tty驱动的设计方法来设计,即定义tty_driver并实现tty_operations其中的成员函数,但是Linux已经在文件serial_core.c中实 ... 
- arm linux利用alsa驱动并使用usb音频设备
		一.背景: arm linux的内核版本是3.13.0 二.准备工作 添加alsa驱动到内核中,也就是在编译内核的时候加入以下选项: 接下来就重新编译内核即可 三.交叉编译alsa-lib和alsa- ... 
- ARM-Linux S5PV210 UART驱动(2)---- 终端设备驱动
		在Linux中,UART串口驱动完全遵循tty驱动的框架结构,但是进行了底层操作的再次封装,所以先介绍tty终端设备驱动. 一.终端设备 1.串行端口终端(/dev/ttySACn) 2.伪终端(/d ... 
- ARM-Linux S5PV210 UART驱动(6)----platform device的添加
		开发板是飞凌OK210 arch/arm/mach-s5pv210/mach-smdkc110.c 首先是UART的寄存器默认配置信息: /* Following are default values ... 
- ARM-Linux S5PV210 UART驱动(5)----串口的open操作(tty_open、uart_open)
		串口驱动初始化后,串口作为字符驱动也已经注册到系统了,/dev目录下也有设备文件节点了. 那接下来uart的操作是如何进行的呢? 操作硬件之前都是要先open设备,先来分析下这里的open函数具体做了 ... 
- ARM-Linux S5PV210 UART驱动(1)----用户手册中的硬件知识
		一.概述 The Universal Asynchronous Receiver and Transmitter (UART) in S5PV210 provide four independent ... 
- Linux UART驱动分析
		1. 介绍 8250是IBM PC及兼容机使用的一种串口芯片; 16550是一种带先进先出(FIFO)功能的8250系列串口芯片; 16550A则是16550的升级版本, 修复了FIFO相关BUG, ... 
- 调试exynos4412—ARM嵌入式Linux—LEDS/GPIO驱动之二
		/** ****************************************************************************** * @author 暴走的小 ... 
随机推荐
- YoloV4当中的Mosaic数据增强方法(附代码详细讲解)码农的后花园
			上一期中讲解了图像分类和目标检测中的数据增强的区别和联系,这期讲解数据增强的进阶版- yolov4中的Mosaic数据增强方法以及CutMix. 前言 Yolov4的mosaic数据增强参考了CutM ... 
- 09. jenkins配置不同用户显示不同视图
			jenkins配置不同用户显示不同视图 一.新建用户 1.1 新建用户 Manage Jenkins -> Manage Users -> 新建用户 1.2 我创建了三个用户,分别 ... 
- Agumater 增加基本数据上传下载能力
- JQuery的Ajax实现注册检测用户名
			Ajax(无需等待直接向服务器发起请求) (Asynchronous Javascript And Xml) :异步的 Google创新的一种js技术 实现方法一:比较原始没有封装的方法: //核对用 ... 
- 动手编写—动态数组(Java实现)
			目录 数组基础回顾 自定义动态数组 动态数组的设计 抽象父类接口设计 抽象父类设计 动态数组之DynamicArray 补充数组缩容 全局的关系图 声明 数组基础回顾 1.数组是一种常见的数据结构,用 ... 
- python之requests.session()使用
			背景:使用requests.session会话对象先登录至豆瓣网,再进入“我的豆瓣”. 首先说一下,为什么要进行会话保持的操作? requests库的session会话对象可以跨请求保持某些参数. 说 ... 
- String的intern方法的使用场景
			在讲intern方法前,我们先简单回顾下Java中常量池的分类. 常量池的分类 Java中常量池可以分为Class常量池.运行时常量池和字符串常量池. 1. Class文件常量池 在Class文件中除 ... 
- 终于有人把MYSQL索引讲清楚了
			一什么是索引 索引在MYSQL中也可以称为键,其是存储引擎用于快速查找记录的一种数据结构:这样听起来有点生涩,你可能难以理解:如果给你一本书,你如何能够精确的查找到书中某个章节的具体位置呢?我们肯定是 ... 
- istio 常见的 10 个异常
			总结使用 istio 常见的10个异常: Service 端口命名约束 流控规则下发顺序问题 请求中断分析 sidecar 和 user container 启动顺序 Ingress Gateway ... 
- Redis5设计与源码分析读后感(三)跳跃表
			一.引言 有序集合在日常开发中相当常见,比如做排名等相关的功能,肯定要用到排序的功能,那么常见底层实现有很多种: 数组 :不便于元素的插入和删除 链表 :查询效率低,需要遍历所有元素 平衡树OR红黑树 ... 
