Bidirectional LSTM-CRF Models for Sequence Tagging. Zhiheng Huang. 2015

在2015年,本文第一个提出使用BiLSTM-CRF来做序列标注任务,BiLSTM-CRF模型的优势有三点:

  • efficiently use both past and future input features thanks to a bidirectional LSTM component.
  • use sentence level tag information thanks to a CRF layer.
  • robust and has less dependence on word embedding as compared to previous observations

尽管如此,BiLSTM-CRF的成绩只达到了接近SOTA的水准

实验数据集

本文在三个数据集上做了测评,Penn TreeBank(PTB)词性标注数据集、CoNLL 2000组块分析(chunking)数据集、CoNLL 2003命名实体标注数据集。

其中,词性标注就是给每个词标上句法角色,比如名词、动词、形容词等等;组块分析是给每个词打上短语类型,比如B-NP表示名词短语的开头;命名实体识别则是给词打上人名、地名、组织名等类型。

数据集的规模如下所示:

特征

有三种,第一种是拼写特征,比如开头字母、大小写、词的构成;第二种是上下文特征,使用unigram特征和bi-grams特征;第三种是词嵌入。

这里面的上下文特征到底是什么样的,论文没有细讲,一笔带过了。。。

在特征连接上,使用了一个技巧:

就是把拼写和上下文特征和输出连接起来,不仅可以加速训练,还可以带来相似的标注准确率(有点残差连接的感觉)。

实验结果

实验的一些经验之谈:

  • 模型性能和隐藏单元大小无关;
  • 模型在10论内就可以收敛;
  • 对于词性分析,报告词准确率;对于组块分析和命名实体识别,报告F1值;

下面是各个LSTM衍生模型的实验结果对比:

可以看到,在所有基于LSTM的模型中,BiLSTM-CRF表现最好。

接下来还有一些ablation study,只使用词嵌入特征,而不使用拼写特征和上下文特征的对比:

可以看出CRF非常依赖于人工特征;而基于LSTM的模型,BiLSTM和BiLSTM-CRF对此影响较小,具有一定的鲁棒性(词性标注和组块分析是比较小,但是NER上都四个百分点了,这还小吗?)。

再来看看和其他一些模型的对比:

可以看到BiLSTM-CRF不能说是最好,只能说接近SOTA。


BiLSTM:序列标注任务的标杆的更多相关文章

  1. TensorFlow教程——Bi-LSTM+CRF进行序列标注(代码浅析)

    https://blog.csdn.net/guolindonggld/article/details/79044574 Bi-LSTM 使用TensorFlow构建Bi-LSTM时经常是下面的代码: ...

  2. TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载

    http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...

  3. ALBERT+BiLSTM+CRF实现序列标注

    一.模型框架图 二.分层介绍 1)ALBERT层 albert是以单个汉字作为输入的(本次配置最大为128个,短句做padding),两边分别加上开始标识CLS和结束标识SEP,输出的是每个输入wor ...

  4. Bi-LSTM+CRF在文本序列标注中的应用

    传统 CRF 中的输入 X 向量一般是 word 的 one-hot 形式,前面提到这种形式的输入损失了很多词语的语义信息.有了词嵌入方法之后,词向量形式的词表征一般效果比 one-hot 表示的特征 ...

  5. 转:TensorFlow入门(六) 双端 LSTM 实现序列标注(分词)

    http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @cr ...

  6. BI-LSTM-CRF在序列标注中的应用

    1. 前言 在NLP中有几个经典的序列标注问题,词性标注(POS),chunking和命名实体识别(NER).序列标注器的输出可用于另外的应用程序.例如,可以利用在用户搜索查询上训练的命名实体识别器来 ...

  7. 序列标注(HMM/CRF)

    目录 简介 隐马尔可夫模型(HMM) 条件随机场(CRF) 马尔可夫随机场 条件随机场 条件随机场的特征函数 CRF与HMM的对比 维特比算法(Viterbi) 简介 序列标注(Sequence Ta ...

  8. 序列标注(BiLSTM-CRF/Lattice LSTM)

    前言 在三大特征提取器中,我们已经接触了LSTM/CNN/Transormer三种特征提取器,这一节我们将介绍如何使用BiLSTM实现序列标注中的命名实体识别任务,以及Lattice-LSTM的模型原 ...

  9. NLP之CRF应用篇(序列标注任务)

    1.CRF++的详细解析 完成的是学习和解码的过程:训练即为学习的过程,预测即为解码的过程. 模板的解析: 具体参考hanlp提供的: http://www.hankcs.com/nlp/the-cr ...

随机推荐

  1. js:数组(创建、遍历、函数)

    1.数组 采用单个变量只能存储一个数据,数组能够存储多个数据,获取方式也比较简单.它是将一组数据存储在当个变量下的存储方式. 2.数组的创建 (1)new方式创建,不指定数组长度 <script ...

  2. HDOJ 1051. Wooden Sticks

    题目 There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The ...

  3. 虚拟化-SDDC软件定义数据中心

    一.什么是SDDC? SDDC依赖于虚拟化和云计算技术, SDDC的目标是虚拟化数据中心的一切物理资源,通过虚拟化的技术,构建一个由虚拟资源组成的资源池,不仅是对服务器进行虚拟化,还包括存储虚拟化和网 ...

  4. Git的忽略文件

    *.iml.gradle.idea/local.properties/.idea/workspace.xml/.idea/libraries.DS_Store/build/captures.exter ...

  5. 看了这篇你就会手写RPC框架了

    一.学习本文你能学到什么? RPC的概念及运作流程 RPC协议及RPC框架的概念 Netty的基本使用 Java序列化及反序列化技术 Zookeeper的基本使用(注册中心) 自定义注解实现特殊业务逻 ...

  6. Java流程控制(Scanner)

    3.1用户交互Scanner 可以通过Scanner类来获取用户的输入: 语法: Scanner s = new Scanner(System.in); 通过Scanner类的next()与nextL ...

  7. hostapd阅读(openwrt)-4

    接下来,咱们来看看hostapd的源码目录之hostapd,今天我们先分析整体功能,然后从main.c开始注释 hostapd下代码主要作用有:配置解析,环境初始化,控制接口建立,AP接口管理模块. ...

  8. 图表可视化seaborn风格和调色盘

    seaborn是基于matplotlib的python数据可视化库,提供更高层次的API封装,包括一些高级图表可视化等工具. 使用seaborn需要先安装改模块pip3 install seaborn ...

  9. Csrf+Xss组合拳

    本文首发于“合天智汇”公众号,作者: 影子 各位大师傅,第一次在合天发文章,请多多关照 今年年初的疫情确实有点突然,打乱了上半年的所有计划(本来是校内大佬带我拿奖的时刻,没了 ,学长毕业了,就剩下我这 ...

  10. 如何用Excel进行预测分析?

      [面试题] 一个社交APP, 它的新增用户次日留存.7日留存.30日留存分别是52%.25%.14%. 请模拟出来,每天如果日新增6万用户,那么第30天,它的日活数会达到多少?请使用Excel进行 ...