Currency Exchange

POJ-1860

  • 这题其实是最短路问题的变形,但是这里不用求解最短路,而是求解路径中是否存在正圈。如果存在正圈则说明兑换后的货币可以一直增加,否则不能实现通过货币转化来增加财富。
  • 这和经典的使用Bellman-Ford判断是否存在负权也有不同的地方,这里需要在松弛方程中,改变判断的条件。
package POJ;
import java.util.*; public class POJ_1860 {
static int n,m,s;
static double money;
static int edges;//边的数量
static class edge{
public int from,to;
public double rate,commisions;
edge(){}
edge(int from,int to,double rate,double commisions){
this.from=from;this.to=to;this.rate=rate;this.commisions=commisions;
}
};
static edge []es;
static double []d;
static boolean BellmanFord() {
d[s]=money;
for(int i=1;i<n;i++) {//下标从1开始
boolean flag=false;
for(int j=0;j<edges;j++) {
edge e=es[j];
if(d[e.to]<(d[e.from]-e.commisions)*e.rate) {
flag=true;
d[e.to]=(d[e.from]-e.commisions)*e.rate;
}
}
if(!flag)
return false;
}
for(int j=0;j<edges;j++) {
edge e=es[j];
if(d[e.to]<(d[e.from]-e.commisions)*e.rate) {
return true;
}
}
return false;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner cin=new Scanner(System.in);
n=cin.nextInt();
m=cin.nextInt();
s=cin.nextInt();
money=cin.nextDouble();
es=new edge[2*m];
d=new double[n+1];
int j=0;
for(int i=0;i<m;i++) {
int from,to;
double r,m,r1,m1;
from=cin.nextInt();to=cin.nextInt();r=cin.nextDouble();m=cin.nextDouble();r1=cin.nextDouble();m1=cin.nextDouble();
es[j++]=new edge(from,to,r,m);
es[j++]=new edge(to,from,r1,m1);
}
edges=j;
if(BellmanFord())
System.out.println("YES");
else System.out.println("NO");
}
} ``

POJ-1860(最短路问题,Bellman-Ford算法判正圈)的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  4. POJ-3259(最短路+Bellman-Ford算法判负圈)

    Wormholes POJ-3259 这题是最短路问题中判断是否存在负圈的模板题. 判断负圈的一个关键就是理解:如果在图中不存在从s可达的负圈,最短路径不会经过一个顶点两次.while循环最多执行v- ...

  5. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

  6. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  7. POJ 1860 Currency Exchange【SPFA判环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  8. (简单) POJ 1860 Currency Exchange,SPFA判圈。

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  9. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

随机推荐

  1. 关于最小生成树 Kruskal 和 Prim 的简述(图论)

    模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...

  2. ZeptoLab Code Rush 2015 B. Om Nom and Dark Park

    Om Nom is the main character of a game "Cut the Rope". He is a bright little monster who l ...

  3. 2020 ICPC Asia Taipei-Hsinchu Regional Problem H Optimization for UltraNet (二分,最小生成树,dsu计数)

    题意:给你一张图,要你去边,使其成为一个边数为\(n-1\)的树,同时要求树的最小边权最大,如果最小边权最大的情况有多种,那么要求总边权最小.求生成树后的所有简单路径上的最小边权和. 题解:刚开始想写 ...

  4. linux 部署 .net core mvc

    1.本地编写一个mvc网站 代码编辑器:Visual studio 2017.2019.Visual Code 均可 1)搭建 略. (请自行搜索如何编辑mvc,或看文末参考链接) 2)配置 Prog ...

  5. [视频] Docker 安装 nginx + rtmp

    目录 拉取镜像 创建并运行容器,映射出两个端口1935.80 将视频文件推流至rtmp服务器 使用ffplay播放rtmp流 拉取镜像 docker pull alfg/nginx-rtmp 创建并运 ...

  6. 实战交付一套dubbo微服务到k8s集群(5)之使用Jenkins进行持续构建交付dubo服务的提供者

    1.登录到jenkins,新建一个项目 2.新建流水线 3.设置保留的天数及份数 4.添加第一个参数:设置项目的名称 5.添加第二个参数:docker镜像名称 6.添加第三个参数:项目所在的git中央 ...

  7. Zabbix 自动发现 & 自动注册

    自动发现 Zabbix 为用户提供了高效灵活的网络自动发现功能,有以下优点: 加快 Zabbix 部署 简化管理 无需过多管理,也能在快速变化的环境中使用 Zabbix Zabbix 网络发现基于以下 ...

  8. tensorflow报错:Attempting to fetch value instead of handling error Internal: failed to get device attribute 13 for device 0: CUDA_ERROR_UNKNOWN:

    就是在spyder跑上一篇文章的代码然后就报错: Attempting to fetch value instead of handling error Internal: failed to get ...

  9. CSS Box Model All In One

    CSS Box Model All In One CSS 盒子模型 All In One CSS Box Model CSS Box Model Module Level 3 W3C Working ...

  10. Expose Loader & shit jquery

    Expose Loader webpack https://github.com/xgqfrms/FEIQA/issues/31#issuecomment-418255126 require(&quo ...