POJ-1860(最短路问题,Bellman-Ford算法判正圈)
Currency Exchange
POJ-1860
- 这题其实是最短路问题的变形,但是这里不用求解最短路,而是求解路径中是否存在正圈。如果存在正圈则说明兑换后的货币可以一直增加,否则不能实现通过货币转化来增加财富。
- 这和经典的使用Bellman-Ford判断是否存在负权也有不同的地方,这里需要在松弛方程中,改变判断的条件。
package POJ;
import java.util.*;
public class POJ_1860 {
static int n,m,s;
static double money;
static int edges;//边的数量
static class edge{
public int from,to;
public double rate,commisions;
edge(){}
edge(int from,int to,double rate,double commisions){
this.from=from;this.to=to;this.rate=rate;this.commisions=commisions;
}
};
static edge []es;
static double []d;
static boolean BellmanFord() {
d[s]=money;
for(int i=1;i<n;i++) {//下标从1开始
boolean flag=false;
for(int j=0;j<edges;j++) {
edge e=es[j];
if(d[e.to]<(d[e.from]-e.commisions)*e.rate) {
flag=true;
d[e.to]=(d[e.from]-e.commisions)*e.rate;
}
}
if(!flag)
return false;
}
for(int j=0;j<edges;j++) {
edge e=es[j];
if(d[e.to]<(d[e.from]-e.commisions)*e.rate) {
return true;
}
}
return false;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner cin=new Scanner(System.in);
n=cin.nextInt();
m=cin.nextInt();
s=cin.nextInt();
money=cin.nextDouble();
es=new edge[2*m];
d=new double[n+1];
int j=0;
for(int i=0;i<m;i++) {
int from,to;
double r,m,r1,m1;
from=cin.nextInt();to=cin.nextInt();r=cin.nextDouble();m=cin.nextDouble();r1=cin.nextDouble();m1=cin.nextDouble();
es[j++]=new edge(from,to,r,m);
es[j++]=new edge(to,from,r1,m1);
}
edges=j;
if(BellmanFord())
System.out.println("YES");
else System.out.println("NO");
}
}
``
POJ-1860(最短路问题,Bellman-Ford算法判正圈)的更多相关文章
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)
链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...
- POJ-3259(最短路+Bellman-Ford算法判负圈)
Wormholes POJ-3259 这题是最短路问题中判断是否存在负圈的模板题. 判断负圈的一个关键就是理解:如果在图中不存在从s可达的负圈,最短路径不会经过一个顶点两次.while循环最多执行v- ...
- POJ 1860 Currency Exchange (bellman-ford判负环)
Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- (简单) POJ 1860 Currency Exchange,SPFA判圈。
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
随机推荐
- 关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...
- ZeptoLab Code Rush 2015 B. Om Nom and Dark Park
Om Nom is the main character of a game "Cut the Rope". He is a bright little monster who l ...
- 2020 ICPC Asia Taipei-Hsinchu Regional Problem H Optimization for UltraNet (二分,最小生成树,dsu计数)
题意:给你一张图,要你去边,使其成为一个边数为\(n-1\)的树,同时要求树的最小边权最大,如果最小边权最大的情况有多种,那么要求总边权最小.求生成树后的所有简单路径上的最小边权和. 题解:刚开始想写 ...
- linux 部署 .net core mvc
1.本地编写一个mvc网站 代码编辑器:Visual studio 2017.2019.Visual Code 均可 1)搭建 略. (请自行搜索如何编辑mvc,或看文末参考链接) 2)配置 Prog ...
- [视频] Docker 安装 nginx + rtmp
目录 拉取镜像 创建并运行容器,映射出两个端口1935.80 将视频文件推流至rtmp服务器 使用ffplay播放rtmp流 拉取镜像 docker pull alfg/nginx-rtmp 创建并运 ...
- 实战交付一套dubbo微服务到k8s集群(5)之使用Jenkins进行持续构建交付dubo服务的提供者
1.登录到jenkins,新建一个项目 2.新建流水线 3.设置保留的天数及份数 4.添加第一个参数:设置项目的名称 5.添加第二个参数:docker镜像名称 6.添加第三个参数:项目所在的git中央 ...
- Zabbix 自动发现 & 自动注册
自动发现 Zabbix 为用户提供了高效灵活的网络自动发现功能,有以下优点: 加快 Zabbix 部署 简化管理 无需过多管理,也能在快速变化的环境中使用 Zabbix Zabbix 网络发现基于以下 ...
- tensorflow报错:Attempting to fetch value instead of handling error Internal: failed to get device attribute 13 for device 0: CUDA_ERROR_UNKNOWN:
就是在spyder跑上一篇文章的代码然后就报错: Attempting to fetch value instead of handling error Internal: failed to get ...
- CSS Box Model All In One
CSS Box Model All In One CSS 盒子模型 All In One CSS Box Model CSS Box Model Module Level 3 W3C Working ...
- Expose Loader & shit jquery
Expose Loader webpack https://github.com/xgqfrms/FEIQA/issues/31#issuecomment-418255126 require(&quo ...