1.欧拉定理

设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数

结论一:axi与axj不同余

结论二:gcd(axi,n)=1

结论三:x1,x2,...,xk和ax1,ax2,...,axk一一对应

结论四:aφ(n)≡1(mod n)

计算:φ(m)=m*(1-1/p1)*......*(1-1/pi)

Back to here

请证明:如果n为素数,取a<n,设n-1=d*2r,则要么ad≡1(mod n)要么存在0<=i<r,使得ad*2^t≡-1(mod n),要么存在0<=i<r,使得ad*2^t≡-1(mod n)

证:由费马小定理得an-1≡1(mod n),已知n-1=d*2r

∴ad*2^r≡1(mod n)

∴ad*2^r-1≡0(mod n)

由平方差公式知:(ad*2^(r-1))(ad*2^(r-1))≡0(mod n)

∴原式=(ad-1)(ad+1)(ad*2+1)(ad*2^2).......(ad*2^(r-1)+1≡0(mod n)

2.线性求逆元

求1~n所有数 对p的逆元(p为质数)

为了减少时间,我们要尽量利用已经求出来的逆元进行计算,也就是说,当求i的逆元时,1~i-1的逆元已经求完了

设1<=i<=n

∵p/i=k......r

∴p=ik+r

ik+r≡0 (mod p)

kr-1+i-1≡0 (mod p)

i-1≡-kr-1 (mod p)

最后一步把k和r带进去就可以得到

卡n log n的复杂度用到

3.BSGS算法(baby-step  gaint-step)

问题:求ax≡b (mod m)的最小正整数解(m为质数)

如果枚举:复杂度为O(m)

考虑分块

能否从其中某一行找到答案
从第二行找答案等价于第一行里面是否存在

从第三行找答案等价于第二行里面是否存在

先暴力出第一行,再排序二分,这样求每一行都可以化成第一行

代码如下:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
int size,a,b,p,z[];
bool erfen(int x)//二分查找答案
{
int l=,r=size;
while (l+!=r)
{
int m=(l+r)>>;
if (z[m]>=x) r=m;
else l=m;
}
return z[r]==x;
} int powmod(int x,int y,int z)
{
int i=x;
int s=;
while(y)
{
if(y&)
{
s=(s*i)%z;
}
i=(i*i)%z;
y>>=;
}
return s%z;
} int bsgs(int a,int b,int p)//bsgs算法
{
size=sqrt(p);//分块 int nowv=;
for(int i=;i<=size;i++)
{
nowv = (long long) nowv*a%p;//枚举
z[i] = nowv;
if(z[i]==b) return ;
}
sort(z+,z+size+);
for(int i=;(i-)*size+<=p;i++)
{
int y=(long long)b*powmod(powmod(a,size*(i-),p),p-,p);
if(erfen(y))
{
for(int j=(i-)*size+;j<=i*size;j++)
if(powmod(a,j,p)==b) return j;
}
}
return -;
} int main()
{
cin>>a>>b>>p;
cout<<bsgs(a,b,p);
return ;
}

i-1行*size个数+1

4.数论函数

喂正整数吐整数

积性函数

积性函数:当gcd(a,b)=1时,ƒ(ab)=ƒ(a)ƒ(b)

完全积性函数:ƒ(ab)=f(a)f(b)

积性函数包括:

不变函数:ƒ(n)=n

欧拉函数:ƒ(n)=φ(n)

莫比乌斯函数:ƒ(n)=μ(n)

因子数目总数:ƒ(n)=d(n)

因子之和函数:ƒ(n)=σ(n)

如μ(4)=0
μ(15)=1
μ(1001)=-1

φ和μ的实现:考虑线性筛,降低复杂度

代码如下:

memset(not_prime,,sizeof(not_prime));

for (int i=;i<=n;i++)
{
if (!not_prime[i])
{
prime[++ prime_cnt] = i;
phi[i] = i-;
mu[i] = -;
}
for (int j=;j<=prime_cnt;j++)
{
int x = i * prime[j];
if (x>n) break; not_prime[x] = true;
phi[x] = phi[i] * phi[prime[j]];
mu[x] = mu[i] * mu[prime[j]]; if (i % prime[j] == )
{
phi[x] = phi[i] * prime[j];
mu[x] = ;
break;
}
}
}

清北澡堂 Day2 下午 一些比较重要的数论知识整理的更多相关文章

  1. 清北澡堂 Day2 上午 一些比较重要的关于数论的知识整理

    1.算数基本定理: 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>=1; 证: 存在性: 若存在最小 ...

  2. 清北澡堂 Day 3 上午

    1.数论函数的卷积公式 (ƒ*g)(n)=Σd|nƒ(d)×g(n/d) 已知f*[1~n],g[1~n] 怎么求(f*g)[1~n]? 一个个求复杂度O(n根号n) 如何加速? 考虑更换枚举顺序(这 ...

  3. 清明培训 清北学堂 DAY2

    今天是钟皓曦老师的讲授~~ 总结了一下今天的内容: 数论!!! 1.整除性 2.质数 定义: 性质:  3.整数分解定理——算数基本定理 证明: 存在性: 设N是最小不满足唯一分解定理的整数 (1)  ...

  4. 清北学堂Day2

    算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...

  5. 五一培训 清北学堂 DAY2

    今天还是冯哲老师的讲授~~ 今日内容:简单数据结构(没看出来简单qaq) 1.搜索二叉树 前置技能 一道入门题在初学OI的时候,总会遇到这么一道题.给出N次操作,每次加入一个数,或者询问当前所有数的最 ...

  6. 清北Day4

    版权声明:如需转载请标明出处,未得到本人许可请勿转载. 今天就可以看到传说中的 数据结构 嘿嘿嘿嘿 都有什么呢 链表 队列 栈 st表 hash 线段树 树链剖分 一.栈: 放出来这个看烂了的图 值得 ...

  7. 济南清北学堂游记 Day 1.

    快住手!这根本不是暴力! 刷了一整天的题就是了..上午三道题的画风还算挺正常,估计是第一天,给点水题做做算了.. rqy大佬AK了上午的比赛! 当时我t2暴力写挂,还以为需要用啥奇怪的算法,后来发现, ...

  8. 清北学堂2017NOIP冬令营入学测试P4745 B’s problem(b)

    清北学堂2017NOIP冬令营入学测试 P4745 B's problem(b) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 题目描 ...

  9. 清北学堂2017NOIP冬令营入学测试 P4744 A’s problem(a)

    清北学堂2017NOIP冬令营入学测试 P4744 A's problem(a) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题,每三天结算 ...

随机推荐

  1. android中的相对路径

    转载请标明出处:https://www.cnblogs.com/tangZH/p/9939655.html  1.同个文件夹访问 D:\Java\main\A.java D:\Java\main\B. ...

  2. H-ui框架信息图标点击跳出页面问题

    在html中为消息a标签添加id: 在static/h-ui/js/H-ui.min.js添加事件:

  3. 使用OkHttp和Retrofit发送网易云信验证码

    短信服务(Short Message Service)是网易网易云通信为用户提供的一种通信服务的能力,目前支持验证码类短信.通知类短信.运营类短信.语音类短信.国际短信等事务性短信.网易网易云通信短信 ...

  4. 用canvas给视频图片添加特效

    Canvas制作视频图片特效 1. Canvas介绍 1.1Canvas是html5上的一个画布标签,功能有点类似java的swing.可以在canvas上画线条 弧线, 文字 就是画布的功能. 具体 ...

  5. c/c++ 多线程 std::call_once

    多线程 std::call_once 转自:https://blog.csdn.net/hengyunabc/article/details/33031465 std::call_once的特点:即使 ...

  6. Linux DNS服务配置

    主.从域名服务器配置 一.实验环境 主域名服务器:ns1.topsec.com,192.168.120.119 从域名服务器:ns2.topsec.com,192.168.120.120 二.实验步骤 ...

  7. 歌曲的BPM (Beat Per Minute)--每分钟节拍数

    因为老爸喜欢跳舞,总让我帮他整理舞曲,一会儿要慢三,一会儿要慢四,一会儿又要快四....我真的分不清啊 我想啊,慢三,慢四这些应该是歌曲的节拍吧(后来得知专业术语叫BPM),于是就在网上搜看看能不能通 ...

  8. LeetCode算法题-Construct the Rectangle(Java实现)

    这是悦乐书的第243次更新,第256篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第110题(顺位题号是492).对于Web开发人员,了解如何设计网页的大小非常重要.因此 ...

  9. final等关键字和代码块

    一.final关键字 其作用 1.final除构造方法外均可修饰 2.修饰类:被final修饰的类是无法被继承的. 3.修饰方法,可被继承,但是无法被重写 4.修饰变量使其为常量 5.修饰引用型变量, ...

  10. ElasticSearch(八):elasticsearch.yml配置说明

    集群名称:cluster.name: my-application确保在不同的环境中的集群的名称不重复,否则,节点可能会连接到错误的集群上 节点名称:node.name: node-1默认情况下,当节 ...