转自:Caching in Presto

Qubole’s Presto-as-a-Service is primarily targeted at Data Analysts who are tasked with translating ad-hoc business questions into SQL queries and getting results. Since the questions are often ad-hoc, there is some trial and error involved. Therefore, arriving at the final results may involve a series of SQL queries. By reducing the response time of these queries, the platform can reduce the time to insight and greatly benefit the business. In this post, we will talk about some improvements we’ve made in Presto to support this use-case in a cloud setting.

The typical use-case here is a few tables, each of which is a 10-100TB in size, living in cloud storage (e.g. S3). Tables are generally partitioned by date and/or by other attributes. Analyst queries pick a few partitions at a time, typically last one week or one month of data, and involve where clauses. Queries may involve a join with a smaller dimension table and contain aggregates and group-by clauses.

The main bottleneck in supporting this use-case is storage bandwidth. Cloud storage (specifically, Amazon S3) has many positives – it is great for storing large amount of data at low cost. However, S3’s bandwidth is not high enough to support this use-case very well. Furthermore, clusters are ephemeral in Qubole’s cloud platform. They are launched when required and shutdown when not in use. We recently introduced industry’s first auto-scaling Presto clusters which can add and remove nodes depending on traffic. The challenge was to support this use-case while keeping all the economic advantages of the cloud and auto-scaling.

The big opportunity here was that the new generation of Amazon instance types come with SSD devices. Some machine types also come with large amount of memory (r3 instance types) per node. If we’re able to use SSDs and memory as a caching hierarchy, this could solve the bandwidth problem for us. We started building a caching system to take advantage of this opportunity.

Architecture
The figure below shows the architecture of the caching solution. As part of query execution, Presto, like Hadoop, performs split computation. Every worker node is assigned one or more splits. For the sake of exposition, we can assume that one split is one file. Presto’s scheduler assigns splits to worker nodes randomly. We modified the scheduling mechanism to assign split to a node based on a hash of the filename. This assures us that if the same file were to be read for another query, that split will be executed in the same node. This gave us spatial locality. Then, we modified the S3 filesystem code to cache files in local disks as part of query execution. In the example below, if another query required reading file 2, it will be read by worker node 1 from local disk instead of S3 which will be a whole lot faster. The cache, like all others, contains logic for eviction and expiry. Some of the EC2 instances contain multiple SSD volumes and we stripe data across them.

We attempted to use MappedByteBuffer and explicit ByteBuffers for an in-memory cache, but quickly abandoned this approach – the OS filesystem cache did a good enough job and we didn’t have to worry about garbage collection issues.

One problem remained, though. What if a node was added or removed due to auto-scaling? The danger with using simple hashing techniques was that the mapping of files to nodes could change considerably causing a lot of grief. The answer was surprisingly simple – consistent hashing. Consistent hashing ensures that the remapping of splits to nodes changes gracefully. This blogpost does a great job of explaining consistent hashing from a developer’s point of view.

We used Guava extensively for the caching implementation. Guava has a in-memory pluggable cache. We extended it to support our use-case of maintaining on-disk cache. Furthermore, we used Guava’s implementation of consistent hashing.

Experimental Results
To test this feature, we generated a TPC-DS scale 10000 data on a 20 c3.8xlarge node cluster. We used delimited/zlib and ORC/zlib formats. The ORC version was not sorted. Here are table statistics.

Table         Rows       Text         Text, zlib       ORC, zlib
store_sales     28 billion     3.6 TB         1.4 TB         1.1 TB
customer      65 billion     12 GB          3.1 GB         2.5 GB

We used the following queries to measure performance improvements. These queries are representative of common query patterns from analysts.

ID Query Description
Q1 select * from store_sales where ss_customer_sk=1000; Selects ~400 rows
Q2 select ss_store_sk - sum(ss_quantity) as cnt from store_sales group by ss_store_sk order by cnt desc limit 5; Top 5 stores by sales
Q3 select sum(ss_quantity) as cnt from store_sales ssjoin customer c on (ss.ss_customer_sk = c.c_customer_sk)where c.c_birth_year < 1980;

Quantity sold to customers born before 1980 Quantity sold to customers born before 1980

Txt-NoCache means using Txt format with caching feature disabled. The Txt-NoCache case suffers from both problems – inefficient storage format and slow access. Switching to caching provides a good performance improvement. However, the biggest gains are realized when caching is used in conjunction with the ORC format. There is a 10-15x performance improvement by switching to ORC and using Qubole’s caching feature. We incorporated Presto/ORC improvements courtesy Dain (@daindumb) in these experiments. Results show that queries that take many minutes now take a few seconds, thus benefiting the analyst use-case.

Conclusion
Presto, along with Qubole’s caching implementation, can provide the performance necessary to satisfy the Data Analysts while still retaining all the benefits of cloud economics – pay as you go and auto-scaling. We’re also in the process of open-sourcing this work.

Caching in Presto的更多相关文章

  1. 解读ASP.NET 5 & MVC6系列(8):Session与Caching

    在之前的版本中,Session存在于System.Web中,新版ASP.NET 5中由于不在依赖于System.Web.dll库了,所以相应的,Session也就成了ASP.NET 5中一个可配置的模 ...

  2. ABP理论学习之缓存Caching

    返回总目录 本篇目录 介绍 ICacheManager ICache ITypedCache 配置 介绍 ABP提供了缓存的抽象,它内部使用了这个缓存抽象.虽然默认的实现使用了MemoryCache, ...

  3. caching与缓存

    通常,应用程序可以将那些频繁访问的数据,以及那些需要大量处理时间来创建的数据存储在内存中,从而提高性能.例如,如果应用程序使用复杂的逻辑来处理大量数据,然后再将数据作为用户频繁访问的报表返回,避免在用 ...

  4. Lind.DDD.Caching分布式数据集缓存介绍

    回到目录 戏说当年 大叔原创的分布式数据集缓存在之前的企业级框架里介绍过,大家可以关注<我心中的核心组件(可插拔的AOP)~第二回 缓存拦截器>,而今天主要对Lind.DDD.Cachin ...

  5. 使用Enyim.Caching访问阿里云的OCS

    阿里云的开放式分布式缓存(OCS)简化了缓存的运维管理,使用起来很方便,官方推荐的.NET访问客户端类库为 Enyim.Caching,下面对此做一个封装. 首先引用最新版本 Enyim.Cachin ...

  6. #数据技术选型#即席查询Shib+Presto,集群任务调度HUE+Oozie

    郑昀 创建于2014/10/30 最后更新于2014/10/31   一)选型:Shib+Presto 应用场景:即席查询(Ad-hoc Query) 1.1.即席查询的目标 使用者是产品/运营/销售 ...

  7. presto的动态化应用(一):presto节点的横向扩展与伸缩

    一.presto动态化概述 近年来,基于hadoop的sql框架层出不穷,presto也是其中的一员.从2012年发展至今,依然保持年轻的活力(版本迭代依然很快),presto的相关介绍,我们就不赘述 ...

  8. Asp.net Web.Config - 配置元素 caching

    Asp.net Web.Config - 配置元素 caching 记得之前在写缓存DEMO的时候,好像配置过这个元素,好像这个元素还有点常用. 一.caching元素列表   元素 说明 cache ...

  9. 环境搭建 Hadoop+Hive(orcfile格式)+Presto实现大数据存储查询一

    一.前言 Hadoop简介 Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关 ...

随机推荐

  1. python自动生成bean类

    近期在学习python,一直在和java做对比,目前没有发现有通过字段自动生成getter setter方法,故此自己写了一个类,可以通过__init__方法传入类名和字段数组,再调用内部的方法,就可 ...

  2. div不固定高度垂直居中

    父容器的css属性 display:table;overflow:hidden;子容器的css属性 vertical-align:middle;display:table-cell; <!DOC ...

  3. element UI 下拉菜单滚动监听(vue指令)

    直接看代码吧,可以直接粘贴此代码到你的编辑器中看效果. <template> <div class="page-component"> <div cl ...

  4. python初识模块

    sys import sys   print(sys.argv)     #输出 $ python test.py helo world ['test.py', 'helo', 'world']  # ...

  5. 用awk检查报表的列数

    用awk检查报表的列数 前提当然是报表都有相同数量的列 less yourfile|awk ‘{print NF;exit;}’ NF是awk的内置变量,表示当前记录里域的个数,不难看出,这个命令实际 ...

  6. Unity3D UGUI实现Toast

    项目中有些信息需要以Toast的形式体现出来,不需要交互,弹出后一段时间后消失,多个Toast会向上重叠,下面是一个UGUI Toast的实现,动画部份用到了Dotween来实现 首先需要制作Toas ...

  7. python学习6---排序问题

    1.对列表排序 一维列表: sorted():可用于任何可迭代对象,如数组.列表.字典等. sort():list.sort()返回None,这是因为sort在函数内部修改了list的值,当再次访问l ...

  8. ionic2简单分析

    Angular2是一个全新的框架,它从ReactJS以及其他web移动框架借鉴了不少经验和优点,巨大的改进使得开 发体验和性能已经超越了Angular1,而且Ionic2无论是从UI交互效果和跨平台的 ...

  9. vue 基础重要组件 模板指令 事件绑定

    组件:data methods watch new vue({ data:{ a:1, b:[] }, methods:{ dosomething:function(){ this.a++; } }, ...

  10. HDU 6181:Two Paths(次短路)

    Two Paths Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 153428/153428 K (Java/Others) Total S ...