tensorflow的结构

1、使用图(graphs)来表示计算任务

2、在被称之为会话(Session)的上下文(context)中执行图

3、使用tensor表示数据

4、通过变量(Variable)维护状态

5、使用feed和fetch可以为任意的操作赋值或者从中获取数据

1、基本操作:

m1 = tf.constant([[3,3]]) 1行2列   m2 = tf.constant([[2],[3]])   创建常量

product =  tf.matmul(m1,m2)    矩阵乘法

sess= tf.Session()       定义一个会话

with tf.Session()as sess:

relult = sess.run(product),启动默认图     只有用会话才能去调用上面的三个操作 用

sess.close()   关闭会话。

2、变量

x = tf.Variable([1,2])      tensorflow 变量

sub = tf.subtract(x,a)  减法。tf.add(x,a) 加法

init = tf.global_variales_initializer()全局初始化所有变量。

update = tf.assign(state,new_value)  #赋值语句state = new_value

for  _in range(5):  #循环执行5次

3、Fetch 可以执行多个操作

result = sess.run([mul,add])

4、Feed 以字典的形式传入值

input1 = tf.placeholder(tf.float32)#定义占位符 里面的值不确定

sess.run(操作,feed_dict = {操作占位符1:[8.],操作占位符2:[2.]})

5简单实例

   

6、import matplotlib.pylot as plt 导入python 画图的包

x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]  #numpy生成200个-0.5到0.5的值,维度是 200行1列

np.random(0,0.02,x_data.shape)#形状和x_data 一样   np.square(x)x的平方

tf.nn.tanh()或一个激活函数。

plt.figure()  plt.scatter(x,y)将x,y 用散点图打印出来

plt.plot(x,y,'r-',lw = 5)  表示画出来宽为5的红色的实线

tensorflow 基本内容的更多相关文章

  1. 初入TensorFlow————配置TensorFlow

    能看到这说明你对python已经有一定的了解了,因此很多基础直接跳过. 一.TensorFlow环境配置: TensorFlow的环境配置在网上很多的教程都是用anaconda的方式,但是很容易出现冲 ...

  2. TensorFlow or PyTorch

    既然你已经读到了这篇文章,我就断定你已经开始了你的深度学习之旅了,并且对人造神经网络的研究已经有一段时间了:或者也许你正打算开始你的学习之旅.无论是哪一种情况,你都是因为发现你陷入了困惑中,才找到了这 ...

  3. Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡) ------本内容是长时间的积累,有时间再详细整理

    (后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...

  4. keras&tensorflow+分布式训练︱实现简易视频内容问答框架

    内容来源:Keras 之父讲解 Keras:几行代码就能在分布式环境训练模型 把 Keras API 直接整合入 TensorFlow 项目中,这样能与你的已有工作流无缝结合.至此,Keras 成为了 ...

  5. tensorflow dataloader 相关内容

    Tensorflow dataloader 相关调研:数据读取是训练的开始,是非常关键的一步:下面是调研时搜集到的一些相关链接: 十图详解tensorflow数据读取机制 https://zhuanl ...

  6. 《机器学习实战(基于scikit-learn和TensorFlow)》第三章内容的学习心得

    本章主要讲关于分类的一些机器学习知识点.我会按照以下关键点来总结自己的学习心得:(本文源码在文末,请自行获取) 什么是MNIST数据集 二分类 二分类的性能评估与权衡 从二元分类到多类别分类 错误分析 ...

  7. 《机器学习实战(基于scikit-learn和TensorFlow)》第二章内容的学习心得

    请支持正版图书, 购买链接 下方内容里面很多链接需要我们***,请大家自备梯子,实在不会再请留言,节约彼此时间. 源码在底部,请自行获取,谢谢! 当开始着手进行一个端到端的机器学习项目,大致需要以下几 ...

  8. 10 tensorflow在循环体中用tf.print输出节点内容

    代码 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_cond = lambda a,b: ...

  9. Tensorflow 之模型内容可视化

    TensorFlow模型保存和提取方法 1. tensorflow实现 卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化) # 卷积网络的训练数据为MNIST(28*28灰度单色图 ...

随机推荐

  1. 资本寒冬下的android面经

    在2018年10月初,公司倒闭,无奈走上找工作的道路,不想自己平时图安逸,不思进取,再次找工作才发现,android行业也不是站在风口上,猪也能吹上天的世道了.作为技术小菜的我,再找工作那几个月真是战 ...

  2. Datagrip连接Mysql 和Hive

    连接Mysql file->data source general 填写host,port,user,password, 下载驱动,先别test connection 在ssh中填写host,p ...

  3. eclipse格式化代码快捷键失效

    原因是与搜狗输入法的“简繁切换”快捷键冲突(取消搜狗输入法的简繁切换快捷键,即可解决)

  4. jQuery第七章插件的编写和使用

    1.本章目标 编写jquery插件 2.插件 也称为扩展,是一种按照一定的规范的应用程序接口编写出来的程序 插件的目标是给已有的一系列函数做一个封装,以便在其他的地方复用,方便维护和开发效率 3.jq ...

  5. Mac App开发

    1. icns制作 在线工具: https://iconverticons.com/online/ 2. 替换dmg图标 选中dmg文件 右键, 选择显示简介 将icns图表拖拽到简介弹出框的左上角图 ...

  6. bzoj 2028(会场预约)

    题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地. 这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一 ...

  7. Java设计模式迭代器

    定义:提供一种方法,顺序访问一个集合对象中的各个元素,而又不暴露该对象的内部表示. 类型:行为型 适用场景: 访问一个集合对象的内容而无需暴露它的内部表示 为遍历不同的集合结构提供一个统一的接口 优点 ...

  8. git本地项目上传至码云gitee

    如果你的本机是安装成功第一次使用,先配置一下一些基本的信息 $ git config--global user.name "Your Name" $ git config --gl ...

  9. mysql配置主从复制

    1.原理: MySQL之间数据复制的基础是二进制日志文件(binary log file).一台MySQL数据库一旦启用二进制日志后,其作为master,它的数据库中所有操作都会以“事件”的方式记录在 ...

  10. 10_27_requests模块

    1.get请求: 看源码 import requests url= "https://www.baidu.com" res = requests.get(url) print(re ...