BZOJ-1721|线性dp-缆车支柱
Ski Lift 缆车支柱
Description
Farmer Ron in Colorado is building a ski resort for his cows (though budget constraints dictate construction of just one ski lift). The lift will be constructed as a monorail and will connect a concrete support at the starting location to the support at the ending location via some number of intermediate supports, each of height 0 above its land. A straight-line segment of steel connects every pair of adjacent supports. For obvious reasons, each section of straight steel must lie above the ground at all points. Always frugal, FR wants to minimize the number of supports that he must build. He has surveyed the N (2 <= N <= 5,000) equal-sized plots of land the lift will traverse and recorded the integral height H (0 <= H <= 1,000,000,000) of each plot. Safety regulations require FR to build adjacent supports no more than K (1 <= K <= N - 1) units apart. The steel between each pair of supports is rigid and forms a straight line from one support to the next. Help FR compute the smallest number of supports required such that: each segment of steel lies entirely above (or just tangent to) each piece of ground, no two consecutive supports are more than K units apart horizontally, and a support resides both on the first plot of land and on the last plot of land.
科罗拉州的罗恩打算为他的奶牛们建造一个滑雪场,虽然需要的设施仅仅是一部缆车.建造一部缆车,需要从山脚到山顶立若干根柱子,并用钢丝连结它们.你可以认为相对于地面,柱子的高度可以忽略不计.每相邻两根柱子间都有钢丝直接相连.显然,所有钢丝的任何一段都不能在地面之下. 为了节省建造的费用,罗恩希望在工程中修建尽可能少的柱子.他在准备修建缆车的山坡上迭定了N(2≤N≤5000)个两两之间水平距离相等的点,并且测量了每个点的高度H(O≤日≤10^9).并且,按照国家安全标准,相邻两根柱子间的距离不能超过K(1≤K≤N-1)个单位长度.柱子间的钢丝都是笔直的. 罗恩希望你帮他计算一下,在满足下列条件的情况下,他至少要修建多少根柱子:首先,所有的柱子都必须修建在他所选定的点上,且每一段钢丝都必须高于地面或者正好跟地面相切.相邻两根柱子的距离不大于K个单位长度.当然,在第一个点与最后一个点上一定都要修建柱子.
Input
Line 1: Two space-separate integers, N and K
Lines 2..N+1: Line i+1 contains a single integer that is the height of plot i.
第1行:两个整数N和K,用空格隔开.
第2到N+1行:每行包括一个正整数,第i+l行的数描述了第i个点的高度.
Output
- Line 1: A single integer equal to the fewest number of lift towers FR needs to build subject to the above constraints
输出一个整数,即罗恩最少需要修建的柱子的数目.
Sample Input 1
13 4
0
1
0
2
4
6
8
6
8
8
9
11
12
Sample Output 1
5
思路:
dp状态转移方程:
dp[i] 表示在i点最少建立的柱子
dp[i] 就等于 dp[i-k] ~ dp[i-1] 上建立的最少的柱子数 + 1
计算斜率,判断两个点是否能连接
AC代码
#include<bits/stdc++.h>
#define eps 1e-6
using namespace std;
typedef long long ll;
const int maxn = 5010;
int n,k;
ll h[maxn];
ll dp[maxn];
/*
线性dp状态转移方程:
dp[i] 表示在i点最少建立的柱子
dp[i] 就等于 dp[i-k] ~ dp[i-1] 上建立的最少的柱子数 + 1
*/
//判断起点e 和 终点s 是否能建立一个连线 (当且仅当 e 和 s连起来的线段上没有经过其他柱子)
bool check(int s,int e){
double h1=h[s],k=(h[e]-h[s])*1.0/(e-s); //k表示斜率 h表示当前高度
for(int i=s+1;i<e;i++){
h1+=k;
if(h1<h[i]&&fabs(h1-h[i])>eps)return 0;
}
return true;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%lld",&h[i]);
memset(dp,0x3f3f3f,sizeof(dp));//要求dp的最小值 先要初始化为无穷大
dp[1] = 1;
dp[2] = 2;
for(int i=3;i<=n;i++){
for(int j=max(1,i-k);j<i;j++){
if(dp[i] > dp[j] + 1 && check(j,i)) dp[i] = dp[j] + 1;
}
}
printf("%lld\n",dp[n]);
return 0;
}
BZOJ-1721|线性dp-缆车支柱的更多相关文章
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
- 『最长等差数列 线性DP』
最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...
随机推荐
- JavaScript关于md5加密
/*中文加密 *181009 * */ function md5(string) { var x = Array(); var k, AA, BB, CC, DD, a, b, c, d; var S ...
- js自定义格式化时间戳的格式
题目为 : 写一个模块,外部调用这个模块,请求参数是时间戳,模块要求 今天的时间,统一用24小时写作 03:00.15:04 昨天的时间,统一写昨天 昨天之前的时间,但在本周之内的时间,统一用周一.周 ...
- Mybatis+Mysql逆向工程
目录结构: pom文件: <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&quo ...
- 常见MQTT服务器搭建与试用
常见MQTT服务器搭建与试用 简介 MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,它比较适合于在低带宽.不可靠 ...
- Python环境——安装扩展库
一.修改easy_install源 在操作用户家目录添加一个文件 cat >> ~/.pydistutils.cfg <<EOF [easy_install] index-ur ...
- ngnix 反向代理来解决前端跨域问题
1.定义 跨域是指a页面想获取b页面资源,如果a.b页面的协议.域名.端口.子域名不同,所进行的访问行动都是跨域的,而浏览器为了安全问题一般都限制了跨域访问,也就是不允许跨域请求资源.注意:跨域限制访 ...
- 3.3.1 MyBatis框架介绍
MyBatis框架介绍 1. 什么是框架 (1) 框架是偷懒的程序员将代码进行封装, 之后进行重复使用的过程. (2) 框架其实是一个半成品, 以连接数据库为例, 连接数据库使用的驱动, url, 用 ...
- 自己写的一些公共js方法
/* 说明文件:这里用的都是es6的语法 导入导出,拿vue举个栗子,你只需要在用到的地方,按需要导入就行了,然后在mounted中直接可以拿来用 比如下面的手机****方法,在需要用到的地方impo ...
- Apache2 httpd.conf配置文件中文版详解
Apache2 httpd.conf配置文件中文版详解## 基于 NCSA 服务的配置文件.##这是Apache服务器主要配置文件.#它包含服务器的影响服务器运行的配置指令.#参见以取得关于这些指令的 ...
- memcached----------linux下安装memcached,以及php的memcached扩展。
1.通过wget http://www.memcached.org/files/memcached-1.4.24.tar.gz下载最新源码2.解压tar -xf memcached-1.4.24.ta ...