Ski Lift 缆车支柱

Description

Farmer Ron in Colorado is building a ski resort for his cows (though budget constraints dictate construction of just one ski lift). The lift will be constructed as a monorail and will connect a concrete support at the starting location to the support at the ending location via some number of intermediate supports, each of height 0 above its land. A straight-line segment of steel connects every pair of adjacent supports. For obvious reasons, each section of straight steel must lie above the ground at all points. Always frugal, FR wants to minimize the number of supports that he must build. He has surveyed the N (2 <= N <= 5,000) equal-sized plots of land the lift will traverse and recorded the integral height H (0 <= H <= 1,000,000,000) of each plot. Safety regulations require FR to build adjacent supports no more than K (1 <= K <= N - 1) units apart. The steel between each pair of supports is rigid and forms a straight line from one support to the next. Help FR compute the smallest number of supports required such that: each segment of steel lies entirely above (or just tangent to) each piece of ground, no two consecutive supports are more than K units apart horizontally, and a support resides both on the first plot of land and on the last plot of land.

科罗拉州的罗恩打算为他的奶牛们建造一个滑雪场,虽然需要的设施仅仅是一部缆车.建造一部缆车,需要从山脚到山顶立若干根柱子,并用钢丝连结它们.你可以认为相对于地面,柱子的高度可以忽略不计.每相邻两根柱子间都有钢丝直接相连.显然,所有钢丝的任何一段都不能在地面之下. 为了节省建造的费用,罗恩希望在工程中修建尽可能少的柱子.他在准备修建缆车的山坡上迭定了N(2≤N≤5000)个两两之间水平距离相等的点,并且测量了每个点的高度H(O≤日≤10^9).并且,按照国家安全标准,相邻两根柱子间的距离不能超过K(1≤K≤N-1)个单位长度.柱子间的钢丝都是笔直的. 罗恩希望你帮他计算一下,在满足下列条件的情况下,他至少要修建多少根柱子:首先,所有的柱子都必须修建在他所选定的点上,且每一段钢丝都必须高于地面或者正好跟地面相切.相邻两根柱子的距离不大于K个单位长度.当然,在第一个点与最后一个点上一定都要修建柱子.

Input

  • Line 1: Two space-separate integers, N and K

  • Lines 2..N+1: Line i+1 contains a single integer that is the height of plot i.

第1行:两个整数N和K,用空格隔开.

第2到N+1行:每行包括一个正整数,第i+l行的数描述了第i个点的高度.

Output

  • Line 1: A single integer equal to the fewest number of lift towers FR needs to build subject to the above constraints

输出一个整数,即罗恩最少需要修建的柱子的数目.

Sample Input 1

13 4

0

1

0

2

4

6

8

6

8

8

9

11

12

Sample Output 1

5

思路:

dp状态转移方程:

dp[i] 表示在i点最少建立的柱子

dp[i] 就等于 dp[i-k] ~ dp[i-1] 上建立的最少的柱子数 + 1

计算斜率,判断两个点是否能连接

AC代码

#include<bits/stdc++.h>
#define eps 1e-6
using namespace std; typedef long long ll;
const int maxn = 5010;
int n,k;
ll h[maxn];
ll dp[maxn]; /*
线性dp状态转移方程:
dp[i] 表示在i点最少建立的柱子
dp[i] 就等于 dp[i-k] ~ dp[i-1] 上建立的最少的柱子数 + 1
*/ //判断起点e 和 终点s 是否能建立一个连线 (当且仅当 e 和 s连起来的线段上没有经过其他柱子)
bool check(int s,int e){
double h1=h[s],k=(h[e]-h[s])*1.0/(e-s); //k表示斜率 h表示当前高度
for(int i=s+1;i<e;i++){
h1+=k;
if(h1<h[i]&&fabs(h1-h[i])>eps)return 0;
}
return true;
} int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%lld",&h[i]);
memset(dp,0x3f3f3f,sizeof(dp));//要求dp的最小值 先要初始化为无穷大
dp[1] = 1;
dp[2] = 2;
for(int i=3;i<=n;i++){
for(int j=max(1,i-k);j<i;j++){
if(dp[i] > dp[j] + 1 && check(j,i)) dp[i] = dp[j] + 1;
}
}
printf("%lld\n",dp[n]);
return 0;
}

BZOJ-1721|线性dp-缆车支柱的更多相关文章

  1. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  2. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  3. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  4. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  5. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  6. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

  7. nyoj44 子串和 线性DP

    线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...

  8. 『最大M子段和 线性DP』

    最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...

  9. 『最长等差数列 线性DP』

    最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...

随机推荐

  1. h5跳转

    <!doctype html> <html lang="en" style="width:100%; height:100%"> < ...

  2. MS17-010 漏洞研究——免考课题 20155104 赵文昊

    免考实验与研究--MS17-010漏洞研究 研究内容 ·MS17-010漏洞的来源 ·MS17-010漏洞的攻击实例 ·MS17-010漏洞原理分析 ·MS17-010代码分析 写在前面:这次对一个漏 ...

  3. kafka手动开启监听

    项目集成spring-kafka,在项目启动后需要做些初始化资源的任务,kafka消费会依赖这些所以需要配置kafka手动启动. 类似这样,设置autoStartup为false 然后代码里面调用这个 ...

  4. BPDU报文(传统STP)

    BPDU字段包含的信息: Protocol ID 协议ID Version STP版本(三种) STP(802.1D)传统生成树 值为0 RSTP(.1W)快速生成树 值为2 MSTP(.1S)多生成 ...

  5. Ch07 包和引入 - 练习

    1. 编写示例程序,展示为什么  package com.horstmann.impatient  不同于 package com package horstmann package impatien ...

  6. MongoDB3.2新特性之部分索引

    官方介绍:https://docs.mongodb.org/manual/core/index-partial/ mongodb3.2支持对某个集合的部分数据创建索引.如给年龄大于十八岁的数据创建索引 ...

  7. table的thead,tbody,tfoot

    为了让大表格(table)在下载的时候可以分段的显示,就是说在浏览器解析HTML时,table是作为一个整体解释的,使用tbody可以优化显示. 如果表格很长,用tbody分段,可以一部分一部分地显示 ...

  8. Docker下配置双机热备PXC集群

    架构: 步骤: 1.安装centos7   ,设置宿主机IP:192.168.1.224 2.先更新yum软件管理器,再安装docker 1.yum -y update 2.yum install - ...

  9. ros kinetic安装rbx1

    1.首先安装一些依赖包 sudo apt-get install ros-kinetic-turtlebot-bringup \ ros-kinetic-turtlebot-create ros-ki ...

  10. tiny6410 烧写uboot 转载

    #烧录 参考: 03- Tiny6410刷机指南.pdf 假设拿到的Tiny6410开发板没有提前下载任何程序,包括Bootloader. ##Bootloader - Superboot Super ...