问题描述:由于公司业务产品中,需要用户自己填写公司名称,而这个公司名称存在大量的乱填现象,因此需要对其做一些归一化的问题。在这基础上,能延伸出一个预测用户填写的公司名是否有效的模型出来。

目标:问题提出来了,就是想找到一种办法来预测用户填写的公司名是否有效?

问题分析:要想预测用户填写的公司名称是否有效,需要用到NLP的知识内容,我们首先能够想到的是利用NLP中的语言模型,来对公司名称进行训练建模,并结合其他的特征(如:长度等)进行预测。

一、N-Gram的原理

N-Gram是基于一个假设:第n个词出现与前n-1个词相关,而与其他任何词不相关。(这也是隐马尔可夫当中的假设。)整个句子出现的概率就等于各个词出现的概率乘积。各个词的概率可以通过语料中统计计算得到。假设句子T是有词序列w1,w2,w3...wn组成,用公式表示N-Gram语言模型如下:

P(T)=P(w1)*p(w2)*p(w3)***p(wn)=p(w1)*p(w2|w1)*p(w3|w1w2)***p(wn|w1w2w3...)

一般常用的N-Gram模型是Bi-Gram和Tri-Gram。分别用公式表示如下:

Bi-Gram:  P(T)=p(w1|begin)*p(w2|w1)*p(w3|w2)***p(wn|wn-1)

Tri-Gram:  P(T)=p(w1|begin1,begin2)*p(w2|w1,begin1)*p(w3|w2w1)***p(wn|wn-1,wn-2)

  • 注意上面概率的计算方法:P(w1|begin)=以w1为开头的所有句子/句子总数;p(w2|w1)=w1,w2同时出现的次数/w1出现的次数。以此类推。(这里需要进行平滑)

二、N-Gram的应用

根据上面的分析,N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,它主要有两个重要应用场景:

(1)、人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理。

(2)、另外一方面,N-Gram的另外一个作用是用来评估两个字符串之间的差异程度。这是模糊匹配中常用的一种手段。

1、N-gram在两个字符串的模糊匹配中的应用

首先需要介绍一个比较重要的概念:N-Gram距离。

(1)N-gram距离

它是表示,两个字符串s,t分别利用N-Gram语言模型来表示时,则对应N-gram子串中公共部分的长度就称之为N-Gram距离。例如:假设有字符串s,那么按照N-Gram方法得到N个分词组成的子字符串,其中相同的子字符串个数作为N-Gram距离计算的方式。具体如下所示:

字符串:s="ABC",对字符串进行分词,考虑字符串首尾的字符begin和end,得到begin,A,B,C,end。这里采用二元语言模型,则有:(begin,A)、(A,B)、(B,C)、(C,end)。

字符串:t="AB",对字符串进行分词,考虑字符串首尾的字符begin和end,得到begin,A,B,end。这里采用二元语言模型,则有:(begin,A)、(A,B)、(B,end)。

此时,若求字符串t与字符串s之间的距离可以用M-(N-Gram距离)=0。

然而,上面的N—gram距离表示的并不是很合理,他并没有考虑两个字符串的长度,所以在此基础上,有人提出非重复的N-gram距离,公式如下所示:

上面的字符串距离重新计算为:

      4+3-2*3=1

2、N-Gram在判断句子有效性上的应用

假设有一个字符串s="ABC",则对应的BI-Gram的结果如下:(begin,A)、(A,B)、(B,C)、(C,end)。则对应的出现字符串s的概率为:

P(ABC)=P(A|begin)*P(B|A)*P(C|B)*P(end|C)。

3、N-Gram在特征工程中的应用

在处理文本特征的时候,通常一个关键词作为一个特征。这也许在一些场景下可能不够,需要进一步提取更多的特征,这个时候可以考虑N-Gram,思路如下:

以Bi-Gram为例,在原始文本中,以每个关键词作为一个特征,通过将关键词两两组合,得到一个Bi-Gram组合,再根据N-Gram语言模型,计算各个Bi-Gram组合的概率,作为新的特征。

语言模型(N-Gram)的更多相关文章

  1. [转]语言模型训练工具SRILM

    SRILM是一个建立和使用统计语言模型的开源工具包,从1995年开始由SRI 口语技术与研究实验室(SRI Speech Technology and Research Laboratory)开发,现 ...

  2. 斯坦福大学自然语言处理第四课“语言模型(Language Modeling)”

    http://52opencourse.com/111/斯坦福大学自然语言处理第四课-语言模型(language-modeling) 一.课程介绍 斯坦福大学于2012年3月在Coursera启动了在 ...

  3. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

  4. 语言模型srilm基本用法

    目录: 一基本训练 二语言模型打分 三语言模型剪枝 四语言模型合并 五语言模型使用词典限制 一.基本训练 #功能 读取分词后的text文件或者count文件,然后用来输出最后汇总的count文件或者语 ...

  5. NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论

    1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...

  6. 语言模型 N-gram 与其平滑方法推导

    N-gram N-gram 作为一个名词表示的是一个给定文本/音频样本中有n项(音素,音节,字母,单词)的一个连续序列. 数学表达 N-gram 模型表示的是当前这个 word \(w_i\) 依赖于 ...

  7. 语言模型kenlm的训练及使用

    一.背景 近期研究了一下语言模型,同事推荐了一个比较好用的工具包kenlm,记录下使用过程. 二.使用kenlm训练 n-gram 1.工具介绍:http://kheafield.com/code/k ...

  8. CSC321 神经网络语言模型 RNN-LSTM

    主要两个方面 Probabilistic modeling 概率建模,神经网络模型尝试去预测一个概率分布 Cross-entropy作为误差函数使得我们可以对于观测到的数据 给予较高的概率值 同时可以 ...

  9. language model —— basic model 语言模型之基础模型

    一.发展 起源:统计语言模型起源于 Ponte 和 Croft 在 1998年的 SIGIR上发表的论文 应用:语言模型的应用很多: corsslingual retrieval distribute ...

随机推荐

  1. Hadoop之运行模式

    Hadoop运行模式包括:本地模式.伪分布式以及完全分布式模式. 一.本地运行模式 1.官方Grep案例 1)在hadoop-2.7.2目录下创建一个 input 文件夹 [hadoop@hadoop ...

  2. google搜索引擎爬虫爬网站原理

    google搜索引擎爬虫爬网站原理 一.总结 一句话总结:从几个大站开始,然后开始爬,根据页面中的link,不断爬 从几个大站开始,然后开始爬,根据页面中的link,不断加深爬 1.搜索引擎和数据库检 ...

  3. python 学习笔记 4 ----> dive into python 3

    解析 列表解析.字典解析.集合解析 浏览本地文件系统的模块: 1 os 2 os.path 3 glob os模块:获取(和修改)本地目录.文件进程.环境变量等信息 os.path模块:包含了操作路径 ...

  4. 一款好用的JS时间日期插件layDate

    觉得这个插件很不错,使用起来也很方便,推荐使用 1.插件截图 2.插件配置 选择很多,配置也很简单,插件官网:https://www.layui.com/laydate/配置说得很明确,基本操作就是: ...

  5. 保存标注对象到txt 制作xml

    1.算法将检测的目标名称和目标位置保存到txt文本 图片名  xmin ymin xmax ymax (4).avi237face.jpg4smoke 83 234 142 251hand 119 2 ...

  6. OR,RR,HR 临床分析应用中的差别 对照组暴露比值b/d

    1.相对危险度(relative risk,RR).指暴露于某因素发生某事件的风险,即A/(A+B),除以未暴露人群发生的该事件的风险,即C/(C+D),所得的比值,即RR=[A/(A+B)]/[C/ ...

  7. js 获取二级域名

    js获取页面完整地址: window.location.href; var s =" https://ejym.baidu.com";            var h = s.s ...

  8. There are multiple modules with names that only differ in casing. 黄色warning

    There are multiple modules with names that only differ in casing.有多个模块同名仅大小写不同This can lead to unexp ...

  9. Jedis路由key的算法剥离

    在Redis集群中,会有很多个分片,如果此时利用Jedis来操作此Redis集群,那么他会把数据路由到不到的分片上.而且如果动态的往集群中增加分片,也不会影响Jedis的功能.究竟是怎么做到的呢? 由 ...

  10. 【密码技术】Part 4 SSL/TLS

    01 SSL/TLS基本概念 02 TLS协议流程图