Gronwall型不等式
Problem. Suppose $x(t)\in C[0,T]$, and satisfies $$\bex t\in [0,T]\ra 1\leq x(t)\leq C_1+C_2\int_0^t x(\tau)[1+\log x(\tau)]\rd \tau. \eex$$ Prove:
(1) $x(t)$ is bounded on $[0,T].$
(2) This is in stark contrast to the estimates like: $$\bex x(t)\leq C_1+C_2\int_0^t x^{1+\ve}(\tau)\rd \tau, \eex$$ which allows blowup of $x$ in finite time. Show that such blowup can happen for $\ve=2$.
Proof. We first show the Gronwall inequality: $$\bee\label{182.Gronwall} \left.\ba{rr} f(t)\leq C_1+C_2\int_0^t g(s)f(s)\rd s\\ g\geq 0,\ \int_0^T g(t)\rd t<\infty \ea\right\}\ra f(t)\leq C_1e^{C_2\int_0^t g(s)\rd s}<\infty. \eee$$ Indeed, $$\beex \bea &\quad\ f(t)\leq C_1+C_2\int_0^t g(s)f(s)\rd s\\ &\ra \frac{C_2g(t)f(t)}{C_1+C_2\int_0^t g(s)f(s)\rd s}\leq C_2g(t)\\ &\ra \ln \frac{C_1+C_2\int_0^t g(s)f(s)\rd s}{C_1}\leq C_2\int_0^t g(s)\rd s\quad\sex{integrating}\\ &\ra C_1+C_2\int_0^t g(s)f(s)\rd s\leq C_1e^{C_2\int_0^tg(s)\rd s}\\ &\ra f(t)\leq C_1e^{C_2\int_0^tg(s)\rd s}. \eea \eeex$$ Then we return to the problem. (1) $$\beex \bea &\quad\ x(t)\leq C_1+C_2\int_0^t x(\tau)[1+\log x(\tau)]\rd \tau\\ &\ra x(t)\leq C_1e^{C_2\int_0^t[1+\ln x(\tau)]\rd \tau}\quad(\eqref{182.Gronwall})\\ &\ra \ln x(t)\leq \ln C_1+C_2\int_0^t[1+\ln x(\tau)]\rd \tau\\ &\ra \ln x(t)\leq \ln C_1+C_2T+\int_0^t \ln x(\tau)\rd \tau\\ &\ra \ln x(t)\leq (\ln C_1+C_2T)e^{\int_0^t\rd \tau}\quad(\eqref{182.Gronwall}\ again)\\ &\ra x(t)\leq e^{(\ln C_1+C_2T)e^T}<\infty. \eea \eeex$$
(2) Suppose now $$\bex x(t)\leq C_1+C_2\int_0^t x^{2}(\tau)\rd \tau. \eex$$ Let $$\bex f(t)=C_1+C_2\int_0^t x^{2}(\tau)\rd \tau. \eex$$ Then $$\beex \bea &\quad f'(t)=C_2x^2(t)\leq C_2f^2(t)\\ &\ra -\frac{f'(t)}{f^2(t)}\geq -C_2\\ &\ra \frac{1}{f(t)}-\frac{1}{f(0)}\geq -C_2t\\ &\ra f(t)\leq \frac{f(0)}{1-C_2f(0)t}\\ &\ra x(t)\leq f(t)\leq \frac{C_1}{1-C_2C_1t}. \eea \eeex$$ Thus $x(t)$ may blowup at $\dps{t=\frac{1}{C_2C_1}}$.
来源: 家里蹲大学数学杂志第3卷第182期_Blowup_or_Bounded
Gronwall型不等式的更多相关文章
- IMO 1977 第 2 题探析
原题:在一个有限的实数数列中,任意 7 个连续项之和为负数,且任意 11 个连续项之和为正数.求这个数列最多有多少项. 解法一:记这个数列为 a1, a2, ..., ak,问题等价于求 k 的最大值 ...
- [再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_ ...
- 乘积型Sobolev不等式
(Multiplicative Sobolev inequality). Let $\mu,\lambda$ and $\gamma$ be three parameters that satisfy ...
- Codevs 3002 石子归并 3(DP四边形不等式优化)
3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...
- 数理统计9:完备统计量,指数族,充分完备统计量法,CR不等式
昨天我们给出了统计量是UMVUE的一个必要条件:它是充分统计量的函数,且是无偏估计,但这并非充分条件.如果说一个统计量的无偏估计函数一定是UMVUE,那么它还应当具有完备性的条件,这就是我们今天将探讨 ...
- ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单
前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...
- 工厂方法模式——创建型模式02
1. 简单工厂模式 在介绍工厂方法模式之前,先介绍一下简单工厂模式.虽然简单工厂模式不属于GoF 23种设计模式,但通常将它作为学习其他工厂模式的入门,并且在实际开发中使用的也较为频繁. (1 ...
- C++ 事件驱动型银行排队模拟
最近重拾之前半途而废的C++,恰好看到了<C++ 实现银行排队服务模拟>,但是没有实验楼的会员,看不到具体的实现,正好用来作为练习. 模拟的是银行的排队叫号系统,所有顾客以先来后到的顺序在 ...
- Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器
最近在业余时间玩玩树莓派,刚开始的时候在树莓派里写一些基于wiringPi库的C语言程序来控制树莓派的GPIO引脚,从而控制LED发光二极管的闪烁,后来觉得,是不是可以使用HTML5+jQuery等流 ...
随机推荐
- 基于Angular和Spring WebFlux做个小Demo
前言 随着Spring Boot2.0正式发布,Spring WebFlux正式来到了Spring Boot大家族里面.由于Spring WebFlux可以通过更少的线程去实现更高的并发和使用更少的硬 ...
- 【Python 20】BMR计算器4.0(异常处理)
1.案例描述 基础代谢率(BMR):我们安静状态下(通常为静卧状态)消耗的最低热量,人的其他活动都建立在这个基础上. 计算公式: BMR(男) = (13.7*体重kg)+(5.0*身高cm)-(6. ...
- mn
http://image.uczzd.cn/10129986679866437816.jpg?id=0&from=export https://www.cnblogs.com/ityoukno ...
- Ubuntu 下重启网络的方法
命令是: sudo /etc/init.d/networking restart 但是可能会遇到下面的提示: Running /etc/init.d/networking restart is dep ...
- CodeChef Dynamic GCD
嘟嘟嘟vjudge 我今天解决了一个历史遗留问题! 题意:给一棵树,写一个东西,支持一下两种操作: 1.\(x\)到\(y\)的路径上的每一个点的权值加\(d\). 2.求\(x\)到\(y\)路径上 ...
- 从HTTL模板引擎看软件设计原则
HTTL (Hyper-Text Template Language) 是一个高性能的开源JAVA模板引擎, 适用于动态HTML页面输出, 可替代JSP页面, 指令和Velocity相似.作者是阿里巴 ...
- Java 显示读取properties 乱码解决方案
项目开发时,在配置springmvc 校验错误提示信息时,配置到properties的中文,在前端取出时,显示为乱码,可以确定properties 配置文件已经被设为UTF-8编码,在springmv ...
- 如何在Eclipse中Debug调试Java代码
背景 有的时候你想debug调试Java的源代码,就想试图在Java源代码中设置断点,在Eclipse中常常会出现Unable to insert breakpoint Absent Line Num ...
- Go语言公开或未公开的标识符
Go语言公开或未公开的标识符的基本概念 Go语言支持从包里公开或者隐藏标志符,通过这个特性,可以让用户按照自己的规则控制标识符的可见性. Go语言中的可见性,是通过声明类型的大小写来进行区别的. 例如 ...
- css 溢出overflow
css 溢出overflow 当一个元素被设置为固定大小,在这个元素中的内容如果超出元素的界限,就会出现溢出的现象. 通常情况下我们可以通过overflow来控制这个属性. overflow语法定义 ...