Factorized TDNN(因子分解TDNN,TDNN-F)
论文
Povey, D., Cheng, G., Wang, Y., Li, K., Xu, H., Yarmohamadi, M., & Khudanpur, S. (2018). Semi-orthogonal low-rank matrix factorization for deep neural networks. In Proceedings of the 19th Annual Conference of the International Speech Communication Association (INTERSPEECH 2018), Hyderabad, India.
Kaldi recipe
swbd/s5c/local/chain/tuning/run_tdnn_7q.sh
A factorized TDNN has a similar structure as a vanilla TDNN,
except the weight matrices (of the layers) are factorized (using
SVD) into two factors, with one of them constrained to be
semi-orthonormal.
论文笔记
维CNN(1-d CNNs)。本文提出的TDNN-F,结构与经过SVD分解的TDNN相同。但TDNN-F的训练开始于随机初始化,SVD分解后,其中一个矩阵被限制为半正定的。这对TDNNs以及TDNN-LSTM有实质上的提升。
一种减少已训练模型大小的方法是使用奇异值分解(Singular Value Decomposition,SVD)对每个权重矩阵因子分解为两个更小的因子,丢弃更小的奇异值;然后,再次对网络参数进行调优。
很明显,直接训练随机初始化后的上述带有线性瓶颈层的网络会更为高效。虽然,有人以这一方法训练成功,但还是出现了训练不稳定的情况。

之中的一个矩阵限制为半正定矩阵不会损失任何建模能力;并且,这一限制也符合SVD的结果(即,SVD分解后,其中一个子矩阵也是半正定的)。
此外,受到"dense LSTM"的启发,本文使用了跳层连接(skip connection)。这一定程度上类似于残差学习的捷径连接(shortcut connection)和公路连接(highway connection)。
前向计算
|
nnet3/nnet-training.cc const NnetComputation &computation) { // note: because we give the 1st arg (nnet_) as a pointer to the // constructor of 'computer', it will use that copy of the nnet to // store stats. NnetComputer computer(config_.compute_config, computation, nnet_, delta_nnet_); // give the inputs to the computer object. computer.AcceptInputs(*nnet_, eg.io); computer.Run(); this->ProcessOutputs(false, eg, &computer); computer.Run(); // If relevant, add in the part of the gradient that comes from L2 // regularization. ApplyL2Regularization(*nnet_, GetNumNvalues(eg.io, false) * config_.l2_regularize_factor, delta_nnet_); // Update the parameters of nnet bool success = UpdateNnetWithMaxChange(*delta_nnet_, config_.max_param_change, 1.0, 1.0 - config_.momentum, nnet_, &num_max_change_per_component_applied_, &num_max_change_global_applied_); // Scale down the batchnorm stats (keeps them fresh... this affects what // happens when we use the model with batchnorm test-mode set). ScaleBatchnormStats(config_.batchnorm_stats_scale, nnet_); // The following will only do something if we have a LinearComponent // or AffineComponent with orthonormal-constraint set to a nonzero value. ConstrainOrthonormal(nnet_); // Scale deta_nnet if (success) ScaleNnet(config_.momentum, delta_nnet_); else ScaleNnet(0.0, delta_nnet_); }
|
|
nnet3/nnet-utils.cc 对参数矩阵M所做的是将其限制为一个"半正交"矩阵乘以一个常数alpha。也就是说:
如果对于某个组件,orthonormal-constraint > 0.0,那么该参数就变为上述alpha。若orthonormal-constraint == 0.0,则什么都不做。若orthonormal-constraint < 0.0,那么使得alpha浮动,也就是说,试图使得M接近于一alpha乘以一个半正交矩阵。 为了确保该操作在GPU上的有效性,这里不会使得矩阵M完全正交,只是使其更接近于正交(乘以'orthonormal_constraint')。在多次iterations后,该操作会使得矩阵M十分接近与正交矩阵。 void ConstrainOrthonormal(Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *component = nnet->GetComponent(c); CuMatrixBase<BaseFloat> *params = NULL; BaseFloat orthonormal_constraint = 0.0; LinearComponent *lc = dynamic_cast<LinearComponent*>(component); if (lc != NULL && lc->OrthonormalConstraint() != 0.0) { orthonormal_constraint = lc->OrthonormalConstraint(); params = &(lc->Params()); } AffineComponent *ac = dynamic_cast<AffineComponent*>(component); if (ac != NULL && ac->OrthonormalConstraint() != 0.0) { orthonormal_constraint = ac->OrthonormalConstraint(); params = &(ac->LinearParams()); } TdnnComponent *tc = dynamic_cast<TdnnComponent*>(component); if (tc != NULL && tc->OrthonormalConstraint() != 0.0) { orthonormal_constraint = tc->OrthonormalConstraint(); params = &(tc->LinearParams()); } if (orthonormal_constraint == 0.0 || RandInt(0, 3) != 0) { // For efficiency, only do this every 4 or so minibatches-- it won't have // time stray far from the constraint in between. continue; } int32 rows = params->NumRows(), cols = params->NumCols(); if (rows <= cols) { ConstrainOrthonormalInternal(orthonormal_constraint, params); } else { CuMatrix<BaseFloat> params_trans(*params, kTrans); ConstrainOrthonormalInternal(orthonormal_constraint, ¶ms_trans); params->CopyFromMat(params_trans, kTrans); } } } 对矩阵M做一个更新,使其更接近与一个正交矩阵(带有正交行的矩阵)乘以'scale'。注意:若'scale'离奇异值太远,则可能会发散。 void ConstrainOrthonormalInternal(BaseFloat scale, CuMatrixBase<BaseFloat> *M) { KALDI_ASSERT(scale != 0.0); // We'd like to enforce the rows of M to be orthonormal. // define P = M M^T. If P is unit then M has orthonormal rows. // We actually want P to equal scale^2 * I, so that M's rows are // orthogonal with 2-norms equal to 'scale'. // We (notionally) add to the objective function, the value // -alpha times the sum of squared elements of Q = (P - scale^2 * I). int32 rows = M->NumRows(), cols = M->NumCols(); CuMatrix<BaseFloat> M_update(rows, cols); CuMatrix<BaseFloat> P(rows, rows); P.SymAddMat2(1.0, *M, kNoTrans, 0.0); P.CopyLowerToUpper(); // The 'update_speed' is a constant that determines how fast we approach a // matrix with the desired properties (larger -> faster). Larger values will // update faster but will be more prone to instability. 0.125 (1/8) is the // value that gives us the fastest possible convergence when we are already // close to be a semi-orthogonal matrix (in fact, it will lead to quadratic // convergence). // See http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf // for more details. BaseFloat update_speed = 0.125; bool floating_scale = (scale < 0.0); if (floating_scale) { // This (letting the scale "float") is described in Sec. 2.3 of // http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf, // where 'scale' here is written 'alpha' in the paper. // // We pick the scale that will give us an update to M that is // orthogonal to M (viewed as a vector): i.e., if we're doing // an update M := M + X, then we want to have tr(M X^T) == 0. // The following formula is what gives us that. // With P = M M^T, our update formula is doing to be: // M := M + (-4 * alpha * (P - scale^2 I) * M). // (The math below explains this update formula; for now, it's // best to view it as an established fact). // So X (the change in M) is -4 * alpha * (P - scale^2 I) * M, // where alpha == update_speed / scale^2. // We want tr(M X^T) == 0. First, forget the -4*alpha, because // we don't care about constant factors. So we want: // tr(M * M^T * (P - scale^2 I)) == 0. // Since M M^T == P, that means: // tr(P^2 - scale^2 P) == 0, // or scale^2 = tr(P^2) / tr(P). // Note: P is symmetric so it doesn't matter whether we use tr(P P) or // tr(P^T P); we use tr(P^T P) because I believe it's faster to compute. BaseFloat trace_P = P.Trace(), trace_P_P = TraceMatMat(P, P, kTrans); scale = std::sqrt(trace_P_P / trace_P); // The following is a tweak to avoid divergence when the eigenvalues aren't // close to being the same. trace_P is the sum of eigenvalues of P, and // trace_P_P is the sum-square of eigenvalues of P. Treat trace_P as a sum // of positive values, and trace_P_P as their sumsq. Then mean = trace_P / // dim, and trace_P_P cannot be less than dim * (trace_P / dim)^2, // i.e. trace_P_P >= trace_P^2 / dim. If ratio = trace_P_P * dim / // trace_P^2, then ratio >= 1.0, and the excess above 1.0 is a measure of // how far we are from convergence. If we're far from convergence, we make // the learning rate slower to reduce the risk of divergence, since the // update may not be stable for starting points far from equilibrium. BaseFloat ratio = (trace_P_P * P.NumRows() / (trace_P * trace_P)); KALDI_ASSERT(ratio > 0.999); if (ratio > 1.02) { update_speed *= 0.5; // Slow down the update speed to reduce the risk of divergence. if (ratio > 1.1) update_speed *= 0.5; // Slow it down even more. } } P.AddToDiag(-1.0 * scale * scale); // We may want to un-comment the following code block later on if we have a // problem with instability in setups with a non-floating orthonormal // constraint. /* if (!floating_scale) { // This is analogous to the stuff with 'ratio' above, but when we don't have // a floating scale. It reduces the chances of divergence when we have // a bad initialization. BaseFloat error = P.FrobeniusNorm(), error_proportion = error * error / P.NumRows(); // 'error_proportion' is the sumsq of elements in (P - I) divided by the // sumsq of elements of I. It should be much less than one (i.e. close to // zero) if the error is small. if (error_proportion > 0.02) { update_speed *= 0.5; if (error_proportion > 0.1) update_speed *= 0.5; } } */ if (GetVerboseLevel() >= 1) { BaseFloat error = P.FrobeniusNorm(); KALDI_VLOG(2) << "Error in orthogonality is " << error; } // see Sec. 2.2 of http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf // for explanation of the 1/(scale*scale) factor, but there is a difference in // notation; 'scale' here corresponds to 'alpha' in the paper, and // 'update_speed' corresponds to 'nu' in the paper. BaseFloat alpha = update_speed / (scale * scale); // At this point, the matrix P contains what, in the math, would be Q = // P-scale^2*I. The derivative of the objective function w.r.t. an element q(i,j) // of Q is now equal to -2*alpha*q(i,j), i.e. we could write q_deriv(i,j) // = -2*alpha*q(i,j) This is also the derivative of the objective function // w.r.t. p(i,j): i.e. p_deriv(i,j) = -2*alpha*q(i,j). // Suppose we have define this matrix as 'P_deriv'. // The derivative of the objective w.r.t M equals // 2 * P_deriv * M, which equals -4*alpha*(P-scale^2*I)*M. // (Currently the matrix P contains what, in the math, is P-scale^2*I). M_update.AddMatMat(-4.0 * alpha, P, kNoTrans, *M, kNoTrans, 0.0); M->AddMat(1.0, M_update); }
|
Factorized TDNN(因子分解TDNN,TDNN-F)的更多相关文章
- Chain TDNN/LSTM的拼帧索引、延时
TDNN模型示例 TDNN拼帧: 层:(0,3) 层:(-9,0) 层:(0,3) 层:(-6,0) 层:(0,3) 层:(-3,0) 层:(0,3) 层:(-3,0) 输出依赖 帧,各层需要 ...
- 信号为E时,如何让语音识别脱“网”而出?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯教育云发表于云+社区专栏 一般没有网络时,语音识别是这样的 ▽ 而同等环境下,嵌入式语音识别,是这样的 ▽ 不仅可以帮您边说边识. ...
- Convolutional Networks for Images,Speech,and Time-series
Convolutional Networks for Images,Speech,and Time-series Yann LeCun Yoshua Bengio 1995年的 1引言 多层BP网络 ...
- c++常考算法知识点汇总
前言:写这篇博客完全是给自己当做笔记用的,考虑到自己的c++基础不是很踏实,只在大一学了一学期,c++的面向对象等更深的知识也一直没去学.就是想当遇到一些比较小的知识,切不值得用一整篇 博客去记述的时 ...
- Mysql_以案例为基准之查询
查询数据操作
- nnet3 TDNN chunk, left-context, right-context
chunk-width 数据块的宽度 NnetIo name=="input" indexes,left-context+num-frame+right-context=5+7+6 ...
- Factorized Hidden Variability Learning For Adaptation Of Short Duration Language Identification Models
基于因子分解的隐层变量学习,应用于短语句语种识别模型的自适应 LFVs(Language Feature Vectors,语种特征向量)[11],与BSVs(Bottleneck Speake ...
- 数值分析之QR因子分解篇
在数值线性代数中,QR因子分解的思想比其他所有算法的思想更为重要[1]. --Lloyd N. Trefethen & ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
随机推荐
- Ajax概述和判断用户名是否存在的简单代码练习
在本代码中主要体现,Ajax实现了部分位置的刷新.不需要重新刷新网页,重新请求服务器.下面用过代码来对Ajax更深的认识 这里需要创建,一个jsp文件(显示登录界面),js文件(对Ajax的主要设置) ...
- c# 日期函数DateTime.ToString()日期的各种格式
//c# datetime 格式化 DateTime dt = DateTime.Now; //2017/11/14 10:46:56 label1.Text = dt.ToString();//20 ...
- Nodejs OracleDB详细解读
//导入oracledb模块 //基于版本@3.0.1 安装指令npm install oracledb //node访问oracleDB需要搭建访问环境,否则无法正常访问 //创建Oracle对象 ...
- SaaS服务和个性化需求,就不能鱼和熊掌兼得吗?
随时随地.轻松高效,移动工作让人类的自由度最大化.但企业的移动化过程却不轻松:要综合考虑销售.产品.客服.市场销售.人力资源等错综复杂的流程和需求,以及原有IT系统.数据信息的对接. 千企千面,很难有 ...
- C# 使用DES对字符串进行加密
1.DES加密是属于对称加密,加密和解密使用的密钥必须要保持一致,且必须为8位,使用前首先添加引用: 2.逻辑实现代码如下:
- L2-2 小字辈 (25 分)
本题给定一个庞大家族的家谱,要请你给出最小一辈的名单. 输入格式: 输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号.随后第二行 ...
- Web Storage和cookie
Cookie的作用是与服务器进行交互,作为HTTP规范的一部分而存在 ,而Web Storage仅仅是为了在本地“存储”数据而生; Web Storage的概念和cookie相似,区别是它是为了更大容 ...
- pyspider安装出现问题参考
File "c:\users\13733\appdata\local\programs\python\python37\lib\site-packages\pyspider\run.py&q ...
- PHP整洁之道
摘录自 Robert C. Martin的Clean Code 书中的软件工程师的原则 ,适用于PHP. 这不是风格指南. 这是一个关于开发可读.可复用并且可重构的PHP软件指南. 并不是这里所有的原 ...
- 面试题(一续Spring)
9.Spring体系结构和jar用途 参考https://blog.csdn.net/sunchen2012/article/details/53939253 spring官网给出了一张spring3 ...

