# coding: utf-8

# In[1]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc

# In[2]:

data = pd.read_csv("D:/Users/SGG91044/Desktop/MEP_no_defect_data_pivot_test.csv")

# In[3]:

data.head()

# In[4]:

data.drop(columns=["lotid","waferid","defect_count","eqpid","Chamber","Step","Recipie_Name"],inplace=True)
data

# In[5]:

data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')

# In[6]:

for i in range(0,17):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)

# In[10]:

nz = Normalizer()
X=data.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:17]),columns=data.iloc[:,0:17].columns)

# In[11]:

X

# In[12]:

X_train, X_test = train_test_split(
X, test_size=0.3, random_state=8)

# In[30]:

# fit the model
clf = IsolationForest( max_samples=10000,random_state=10 )
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)

# In[35]:

scores_pred = clf.decision_function(X_train.values)
scores_pred

# In[36]:

clf.decision_function(X_test)

我的代码-unsupervised learning的更多相关文章

  1. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  2. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  3. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  4. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  5. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  6. PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记

    PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 20 ...

  7. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

  8. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  9. Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记

    8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...

随机推荐

  1. 微信小程序 遇到的问题(新)

    1.调用wx.chooseImage(),调用系统相册,此时相册中的动图被转化成静态图,上传后也是静态图. 2.刚进微信小程序,onShow在安卓机下会调用两遍,iPhone下正常

  2. 关于node_js的比较

    node_js的比较是我自己初学遇到的第一个绕脑的事情. 在比较的函数多了之后,一些函数的调用和变量提升, 搞得自己头晕,有时候函数是没有返回值的,自己还在 用变量值去比较,实际上却是undefine ...

  3. es6(二)

    三 . 正则扩展: 1.构造函数的扩展 let regex = new Regex('xyz','i'); let regex2 = new Regex(/xyz/i);//test() 方法用于检测 ...

  4. Lumen框架使用Redis与框架Cache压测比较

    使用命令 ab -c 20000 -n 100000 'http://127.0.0.1:9050/v1/api.store.xxx'进行压测,并同时进行了交叉测试,结果如下: 高并发情况下数据目前没 ...

  5. IntelliJ IDEA入门系列

    1.Java Web之Helloworld配置 2.Java Web之Maven搭建Helloworld 3.Java Web之Spring MVC简单管理系统

  6. Ubuntu17.04 安装搜狗中文输入法

    http://blog.csdn.net/ydyang1126/article/details/76223656

  7. 正则表达式判断QQ号格式是否正确

    #正在表达式匹配QQ号格式是否正确#QQ号假如长度为5-11位,纯为数字 import rewhile 1: qq=input("请输入QQ号:") result=re.finda ...

  8. 几个常用内核函数(《Windows内核情景分析》)

    参考:<Windows内核情景分析> 0x01  ObReferenceObjectByHandle 这个函数从句柄得到对应的内核对象,并递增其引用计数. NTSTATUS ObRefer ...

  9. JVM CUP占用率过高排除方法,windows环境

    jdk自带的jvisualvm可以看到程序CPU使用率,但是无法确定具体的线程,想要确定到具体的线程需要借用到微软的Process Explorer 具体排除方法: 一:打开资源管理器,找到cup占用 ...

  10. ESP系列MQTT数据通信

    1.使用一个深圳四博智联科技有限公司的NODEMCU开发板. 2.下载MQTT的SDK压缩包,请查看附件. 3.用官方提供的Eclipse打开MQTT的sdk开发包. 4.打开include文件夹中的 ...