# coding: utf-8

# In[1]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc

# In[2]:

data = pd.read_csv("D:/Users/SGG91044/Desktop/MEP_no_defect_data_pivot_test.csv")

# In[3]:

data.head()

# In[4]:

data.drop(columns=["lotid","waferid","defect_count","eqpid","Chamber","Step","Recipie_Name"],inplace=True)
data

# In[5]:

data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')

# In[6]:

for i in range(0,17):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)

# In[10]:

nz = Normalizer()
X=data.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:17]),columns=data.iloc[:,0:17].columns)

# In[11]:

X

# In[12]:

X_train, X_test = train_test_split(
X, test_size=0.3, random_state=8)

# In[30]:

# fit the model
clf = IsolationForest( max_samples=10000,random_state=10 )
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)

# In[35]:

scores_pred = clf.decision_function(X_train.values)
scores_pred

# In[36]:

clf.decision_function(X_test)

我的代码-unsupervised learning的更多相关文章

  1. Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)

    1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1 ...

  2. Unsupervised Learning: Use Cases

    Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...

  3. Unsupervised Learning and Text Mining of Emotion Terms Using R

    Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...

  4. Supervised Learning and Unsupervised Learning

    Supervised Learning In supervised learning, we are given a data set and already know what our correc ...

  5. Unsupervised learning无监督学习

    Unsupervised learning allows us to approach problems with little or no idea what our results should ...

  6. PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记

    PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning   ICLR 20 ...

  7. 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类

    @(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...

  8. Unsupervised learning, attention, and other mysteries

    Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...

  9. Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记

    8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...

随机推荐

  1. 初学web前端

    菜鸟刚入门,说说最近学习的心得吧. 首先我学前端主要是因为前端可以看到一些东西,比较有趣 好玩.相比其他语言更简单一些 ,但是却没有那么枯燥. 刚刚开始学习前端肯定就是html+css了.我是混着学的 ...

  2. Delphi下的WinSock编程

    一.定址        要通过Winsock建立通信,必须了解如何利用指定的协议为工作站定址.Winsock 2引入了几个新的.与协议无关的函数,它们可和任何一个地址家族一起使用:但是大多数情况下,各 ...

  3. 面试题:电梯/雨伞/杯子/笔/A4纸/纸杯… 怎么测试?

    目的 面试的时候,面试官出题可能会出其不意: 比如随意指定生活当中的一件物品,问你如何测试,见下 作为测试人员,电梯/雨伞/杯子/笔/A4纸/纸杯… 怎么测试? 面试官的考察点 1.在没有需求文档或者 ...

  4. 页面中直接显示FTP中的图片

    页面中直接显示FTP中的图片 FTP根目录下有一张图片,如下 第一步: 通过如下格式,在浏览器上输入路径,确定可看到图片 ftp://root:root@127.0.0.1/111.png ftp:/ ...

  5. python中的unique()

    a = np.unique(A) 对于一维数组或者列表,unique函数去除其中重复的元素,并按元素由大到小返回一个新的无元素重复的元组或者列表 import numpy as np A = [1, ...

  6. LeetCode 547 朋友圈

    题目: 班上有 N 名学生.其中有些人是朋友,有些则不是.他们的友谊具有是传递性.如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友.所谓的朋友圈,是指所有朋友的 ...

  7. js显示表单的提交验证

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. Lvs Dr 模式配置

    1.Dr 安装 ipvsadm # yum -y install ipvsadm # lsmod | grep ip_vs    #检查ipvs模块是否加载进系统.把ipvs模块加载进系统,需要我们执 ...

  9. Rabbit 集群部署

    1.RabbitMQ是用erlang语言编写的,所以我们先安装erlang语言环境 配置erlang语言环境 # vim /etc/yum.repos.d/rabbitmq-erlang.repo [ ...

  10. makefile笔记7 - makefile函数

    在 Makefile 中可以使用函数来处理变量,从而让我们的命令或是规则更为的灵活和具有智能. make 所支持的函数也不算很多,不过已经足够我们的操作了.函数调用后,函数的返回值可以当做变量来使用. ...