我的代码-unsupervised learning
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
# In[2]:
data = pd.read_csv("D:/Users/SGG91044/Desktop/MEP_no_defect_data_pivot_test.csv")
# In[3]:
data.head()
# In[4]:
data.drop(columns=["lotid","waferid","defect_count","eqpid","Chamber","Step","Recipie_Name"],inplace=True)
data
# In[5]:
data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')
# In[6]:
for i in range(0,17):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
# In[10]:
nz = Normalizer()
X=data.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:17]),columns=data.iloc[:,0:17].columns)
# In[11]:
X
# In[12]:
X_train, X_test = train_test_split(
X, test_size=0.3, random_state=8)
# In[30]:
# fit the model
clf = IsolationForest( max_samples=10000,random_state=10 )
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
# In[35]:
scores_pred = clf.decision_function(X_train.values)
scores_pred
# In[36]:
clf.decision_function(X_test)
我的代码-unsupervised learning的更多相关文章
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- Unsupervised Learning: Use Cases
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Neare ...
- Unsupervised Learning and Text Mining of Emotion Terms Using R
Unsupervised learning refers to data science approaches that involve learning without a prior knowle ...
- Supervised Learning and Unsupervised Learning
Supervised Learning In supervised learning, we are given a data set and already know what our correc ...
- Unsupervised learning无监督学习
Unsupervised learning allows us to approach problems with little or no idea what our results should ...
- PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning --- 论文笔记
PredNet --- Deep Predictive coding networks for video prediction and unsupervised learning ICLR 20 ...
- 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类
@(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...
- Unsupervised learning, attention, and other mysteries
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of M ...
- Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记
8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...
随机推荐
- Android中软键盘展示、EditText焦点获取及windowSoftInputMode属性探究
2017-08-14 21:44:23 有很多中情况,分别展示. 1.Activity不做任何设置,布局使用LinearLayout 会自动滚动EditText之上的所有View,代码: <?x ...
- 实时输出topk最频繁变动的股价
网上看到了一道关于bloomburg的面试题,follow 评论的思路 自己试着写了一个HashHeap的实现. 基本思路是维护一个大小为K的最小堆,里面是topK股价变动的公司ID(假设ID是Int ...
- 字符串的顺序倒置。(Reverse)
实际遇到的问题:在串口获取码表数据的时候,有的码表传到电脑上的数字顺序是颠倒的,即:123.45,会显示为54.321.需要重新处理数据.方法很多,也不难实现,现在列举其中5个. public str ...
- Ubuntu16.04 ionic(jdk,sdk,gradle)环境搭建完全攻略
在Ubuntu16.04当中搭建一个ionic环境还是按照官方教程的来,主要问题是首先要把JDK,SDK搭好,环境变量配好.本文中给的包的下载请不要直接用浏览器下载,很慢,尽量用wget 下载,重要的 ...
- ubuntu权限不够
既然提示是权限不够,自然可以增加权限来解决. 如下,把安装命令改为sudo pip install cmake.就可以成功的解决了这个问题.因为加了sudo就相当于管理员操作了.
- java——形参与实参
看了很多的文章,稍微有一些的总结:对最基本的形参与实参有了一定的理解,虽然还是不够深入. 1.基本概念 形参:全称为"形式参数"是在定义函数名和函数体的时候使用的参数,目的是用来接 ...
- 简单的ALV示例
在这里也推荐一条链接,很适合初学者:https://blog.csdn.net/Kang_xiong/article/details/64922576 这是一个特别基础的示例,适合没有任何ABAP基础 ...
- DevExpress ASP.NET Core Controls 2019发展蓝图(No.2)
本文主要为大家介绍DevExpress ASP.NET Core Controls 2019年的官方发展蓝图,更多精彩内容欢迎持续收藏关注哦~ [DevExpress ASP.NET Controls ...
- Android 问题列表
25. Touch 事件传递机制 26. 点击事件设置监听的几种方式 27. Hander 的原理 28. Thread 和HandThread 的区别 29. AsyncTask 简介 30. As ...
- shell练习题7
需求如下: 输入一串随机数字,然后按千分位输出. 例如:输入随机数字为"123456789",输出为123,456,789 参考解答如下 -方法1 [root@lanquark s ...