很久之前做过这道题,但是跑得贼慢,现在用了可以被卡成 n m 的笛卡尔树做法,发现跑得贼快【雾

noteskey

介绍一种复杂度错误然鹅在随机数据下跑得贼快的算法: 笛卡尔树

方法就是 \(O~ n\) 构造一个笛卡尔树,然后同在线做法一样,就是每个点处理出 \(fr[i],fl[i]\) 表示以 i 为终止的前缀贡献和后缀贡献,并用 \(gr[i],gl[i]\) 表示其前/后缀和

然后每次笛卡尔树找到区间最小值的位置,然后这个点会把整个区间分成两份,这样的话我们只要处理两份区间内的答案就好了

对于两份区间我们用 \(fl~ fr~ gl~ gr\) 四个数组就可以处理出分别的贡献了

code

这份代码在洛咕 4 是怎么也跑不进 150 ms 的

//by Judge
#include<cstdio>
#include<cstring>
#include<iostream>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i)
#define ll long long
using namespace std;
const int M=1e5+3;
typedef int arr[M];
typedef ll ARR[M];
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} char sr[1<<21],z[20];int CCF=-1,Z;
inline void Ot(){fwrite(sr,1,CCF+1,stdout),CCF=-1;}
inline void print(ll x,char chr='\n'){
if(CCF>1<<20)Ot();if(x<0)sr[++CCF]=45,x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++CCF]=z[Z],--Z);sr[++CCF]=chr;
} int n,m,rt,top; arr a,s,lc,rc,pre,suf; ARR fl,fr,gl,gr;
inline int query(int l,int r){ //找到这个区间内的最小值位置
for(Rg int x=rt;;x=x>r?lc[x]:rc[x])
if(l<=x&&x<=r) return x;
}
int main(){ n=read(),m=read(),a[0]=a[n+1]=2e9;
fp(i,1,n){ a[i]=read();
while(top&&a[s[top]]>=a[i]) lc[i]=s[top--];
rc[s[top]]=i,s[++top]=i;
} rt=s[1],top=0;
fp(i,1,n){
while(top&&a[s[top]]>a[i]) suf[s[top--]]=i;
pre[i]=s[top],s[++top]=i;
}
while(top) pre[s[top]]=s[top-1],suf[s[top--]]=n+1;
fp(i,1,n) fr[i]=fr[pre[i]]+1ll*a[i]*(i-pre[i]),gr[i]=gr[i-1]+fr[i];
fd(i,n,1) fl[i]=fl[suf[i]]+1ll*a[i]*(suf[i]-i),gl[i]=gl[i+1]+fl[i];
fp(i,1,m){ Rg int l=read(),r=read(),p=query(l,r); //和在线时一样的思路
print(1ll*(p-l+1)*(r-p+1)*a[p]+gr[r]-gr[p]-fr[p]*(r-p)+gl[l]-gl[p]-1ll*fl[p]*(p-l));
} return Ot(),0;
}

题解 P3246 【[HNOI2016]序列】的更多相关文章

  1. 洛谷P3246 [HNOI2016]序列(离线 差分 树状数组)

    题意 题目链接 Sol 好像搞出了一个和题解不一样的做法(然而我考场上没写出来还是爆零0) 一个很显然的思路是考虑每个最小值的贡献. 预处理出每个数左边第一个比他小的数,右边第一个比他大的数. 那么\ ...

  2. 【题解】HNOI2016序列

    也想了有半天,没有做出来……实际上做法确实也是十分精妙的.这里推荐一个blog,个人认为这位博主讲得挺好了:Sengxian's Blog; 感觉启示是:首先要加强对莫队算法 & ST表的熟练 ...

  3. 洛谷P3246 [HNOI2016]序列

    传送门 题解 //minamoto #include<iostream> #include<cstdio> #define ll long long using namespa ...

  4. 洛谷 P3246 - [HNOI2016]序列(单调栈+前缀和)

    题面传送门 这道题为什么我就没想出来呢/kk 对于每组询问 \([l,r]\),我们首先求出区间 \([l,r]\) 中最小值的位置 \(x\),这个可以用 ST 表实现 \(\mathcal O(n ...

  5. 洛谷P3246 [HNOI2016]序列 [莫队]

    传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \ ...

  6. 题解-[HNOI2016]序列

    题解-[HNOI2016]序列 [HNOI2016]序列 给定 \(n\) 和 \(m\) 以及序列 \(a\{n\}\).有 \(m\) 次询问,每次给定区间 \([l,r]\in[1,n]\),求 ...

  7. 【LG3246】[HNOI2016]序列

    [LG3246][HNOI2016]序列 题面 洛谷 题解 60pts 对于每个位置\(i\),单调栈维护它往左第一个小于等于它的位置\(lp_i\)以及往右第一个小于它的位置\(rp_i\). 那么 ...

  8. [BZOJ4540][HNOI2016]序列 莫队

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...

  9. 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈

    [BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...

  10. BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]

    4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...

随机推荐

  1. java基础-jdk工具包

    1. 标准工具 这些工具都是JDK提供的,通常都是长期支持的工具,JDK承诺这些工具比较好用.不同系统.不同版本之间可能会有差异,但是不会突然就有一个工具消失. 1.1 基础包 (extcheck, ...

  2. Python----简单线性回归

    简单线性回归 1.研究一个自变量(X)和一个因变量(y)的关系   简单线性回归模型定义:y=β0+β1x+ε 简单线性回归方程:E(y)=β0+β1x 其中: β0为回归线的截距 β1为回归线的斜率 ...

  3. Ubuntu安装Navicat 12 for MySQL

    环境准备 要想运行Navicat,必须先安装Wine,这个可以使用下面的命令来安装Wine: ubuntu@ubuntu ~ $ sudo apt-get install wine-stable 安装 ...

  4. JQuery td内容获取,修改

    业务需求:获取某个表格中每一行第四个td内容,并根据内容为当前td重新赋值 $(".listtable.table.table-striped.table-bordered.table-ho ...

  5. 清北学堂(2019 4 28 ) part 1

    今天主要用来铺路,打基础 枚举 没什么具体算法讲究,但要考虑更优的暴力枚举方法,例如回文质数,有以下几种思路: 1.挨个枚举自然数,再一起判断是否是回文数和质数,然而一看就不是最优 2.先枚举质数再判 ...

  6. HTML一

    什么是前端: 前端,也称web前端对于网站来说,通常是指网站的前台部分,通俗点就是用户可以看到的部分, 浏览器.APP.应用程序的界面展现和用户交互就是前端 前端要学习那些技术:html+css+ja ...

  7. Centos 7 搭建 你懂的

    2018-11-21    19:10:18 本文初衷只是为自己下次搭建做个记录,文中代码也是借鉴其他博客的 以下为博客链接 https://www.cnblogs.com/shipengfei/p/ ...

  8. C# 将前端传来的图片文件分别以大图和缩略图保存

    HttpPostedFile pic_upload = Request.Files["file"]; Bitmap bitmap = (Bitmap)System.Drawing. ...

  9. spring IOC与AOP

    Spring IOC容器 spring IOC 容器有两种,分别是 BeanFactory 容器和 ApplicationContext 容器. BeanFactory如下: /*第一步,利用Clas ...

  10. ECharts将折线变平滑和去掉点的属性

    eries : [ { name:'your name', symbol:'none', //这句就是去掉点的 smooth:true, //这句就是让曲线变平滑的 type:'line', stac ...