4380: [POI2015]Myjnie

Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special Judge
Submit: 162  Solved: 82
[Submit][Status][Discuss]

Description

有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]。
有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个进行一次消费。但是如果这个最便宜的价格大于c[i],那么这个人就不洗车了。
请给每家店指定一个价格,使得所有人花的钱的总和最大。

Input

第一行包含两个正整数n,m(1<=n<=50,1<=m<=4000)。
接下来m行,每行包含三个正整数a[i],b[i],c[i](1<=a[i]<=b[i]<=n,1<=c[i]<=500000)

Output

第一行输出一个正整数,即消费总额的最大值。
第二行输出n个正整数,依次表示每家洗车店的价格p[i],要求1<=p[i]<=500000。
若有多组最优解,输出任意一组。

Sample Input

7 5
1 4 7
3 7 13
5 6 20
6 7 1
1 2 5

Sample Output

43
5 5 13 13 20 20 13

HINT

Source

鸣谢Claris

Solution

这个区间dp好厉害啊,自己的转移并没有想到,最后是看着Claris的课件做的。

现将$c_{i}$离散化,然后区间dp

$dp[l][r][p]$表示区间$[l,r]$,最小价值为$p$的最大总和,$cnt[k][c]$表示经过$k$位置的费用$\geqslant c$的数量

转移时通过枚举最小值所在的位置$k$,来进行转移$dp[l][r][p]<--dp[l][k-1][p]+dp[k+1][r][p]+cost(k)$

还要记录方案,最后用dfs输出。

总的时间复杂度$O(N^{3}M)$

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int N,M,a[],b[],c[],C[],price[],ls[],tp,top;
int from[][][],last[][][],cnt[][],dp[][][];
inline void Get(int l,int r,int p)
{
if (l>r) return;
int fr=from[l][r][p],la=last[l][r][p];
// printf("%d %d %d %d\n",l,r,p,fr);
price[fr]=C[la];
Get(l,fr-,la); Get(fr+,r,la);
}
int main()
{
N=read(),M=read();
for (int i=; i<=M; i++) a[i]=read(),b[i]=read(),C[i]=c[i]=read(),ls[++tp]=c[i];
sort(ls+,ls+tp+);
for (int i=; i<=tp; i++) if (ls[top]!=ls[i]) ls[++top]=ls[i];
for (int i=,x; i<=M; i++) x=lower_bound(ls+,ls+top+,c[i])-ls,C[x]=c[i],c[i]=x;
// for (int i=1; i<=M; i++) printf("%d ",C[i]); puts("");
for (int l=; l<=N; l++)
for (int r=l; r<=N; r++)
for (int p=; p<=M; p++)
dp[l][r][p]=-0x3fffffff;
for (int len=; len<=N; len++)
for (int l=,r=l+len-; r<=N; l++,r++)
{
for (int k=l; k<=r; k++)
for (int i=; i<=M; i++)
cnt[k][i]=;
for (int i=; i<=M; i++)
if (a[i]>=l && b[i]<=r)
for (int k=a[i]; k<=b[i]; k++)
cnt[k][c[i]]++;
for (int k=l; k<=r; k++)
for (int i=M-; i; i--)
cnt[k][i]+=cnt[k][i+];
for (int k=l; k<=r; k++)
for (int i=; i<=M; i++)
if (dp[l][k-][i]+dp[k+][r][i]+C[i]*cnt[k][i]>dp[l][r][i])
dp[l][r][i]=dp[l][k-][i]+dp[k+][r][i]+C[i]*cnt[k][i],
from[l][r][i]=k,last[l][r][i]=i;// from[l][r][i]=i;
for (int i=M-; i; i--)
if (dp[l][r][i]<dp[l][r][i+])
dp[l][r][i]=dp[l][r][i+],
from[l][r][i]=from[l][r][i+],last[l][r][i]=last[l][r][i+];
// printf("<%d , %d> == %d\n",l,r,dp[l][r][1]);
}
printf("%d\n",dp[][N][]);
Get(,N,);
for (int i=; i<=N; i++) printf("%d ",price[i]);
return ;
}

【BZOJ-4380】Myjnie 区间DP的更多相关文章

  1. BZOJ 4380 Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  2. 【BZOJ4380】[POI2015]Myjnie 区间DP

    [BZOJ4380][POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[ ...

  3. [bzoj] 1068 压缩 || 区间dp

    原题 f[i][j][0/1]表示i-1处有一个M,i到j压缩后的长度,0/1表示i到j中有没有m. 初始为j-i+1 f[i][j][0]=min(f[i][j][0],f[i][k][0]+j-k ...

  4. 【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)

    4380: [POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗 ...

  5. BZOJ 4380 [POI2015]Myjnie | DP

    链接 BZOJ 4380 题面 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i]. 有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗车店,且会选择这些店中最便宜的一个 ...

  6. BZOJ.4897.[Thu Summer Camp2016]成绩单(区间DP)

    BZOJ 显然是个区间DP.令\(f[l][r]\)表示全部消掉区间\([l,r]\)的最小花费. 因为是可以通过删掉若干子串来删子序列的,所以并不好直接转移.而花费只与最大最小值有关,所以再令\(g ...

  7. [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)

    [BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...

  8. [BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)

    [BZOJ 1260][CQOI2007]涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为 ...

  9. [BZOJ 1032][JSOI 2007]祖玛 题解(区间DP)

    [BZOJ 1032][JSOI 2007]祖玛 Description https://www.lydsy.com/JudgeOnline/problem.php?id=1032 Solution ...

随机推荐

  1. java中如何实现多态

    复习基础知识 多态,就是重载和重写.重载发生在一个类中.重写发生在子类,意思就是子类重写父类相同名称的方法.刚学语言有的东西,不必搞得那么清楚,只有知道怎么用就行了,有的问题你要想真正把它搞得很懂,短 ...

  2. CSS3_01之选择器、Hack

    1.兄弟选择器:①相邻兄弟选择器:元素的后一个兄弟元素,选择器1+选择器2:②通用兄弟选择器:元素后的所有兄弟元素,选择器1~选择器2: 2.属性选择器:attr表示属性名称,elem表示元素名:①[ ...

  3. UITableview delegate dataSource调用探究

    UITableview是大家常用的UIKit组件之一,使用中我们最常遇到的就是对delegate和dataSource这两个委托的使用.我们大多数人可能知道当reloadData这个方法被调用时,de ...

  4. ios动态创建类Class

    [Objective-C Runtime动态加载]---动态创建类Class 动态创建类Class,动态添加Class成员变量与成员函数,动态变量赋值与取值,动态函数调用等方法 a.使用objc_al ...

  5. php 学习路线图

  6. [MySQL性能优化系列]提高缓存命中率

    1. 背景 通常情况下,能用一条sql语句完成的查询,我们尽量不用多次查询完成.因为,查询次数越多,通信开销越大.但是,分多次查询,有可能提高缓存命中率.到底使用一个复合查询还是多个独立查询,需要根据 ...

  7. python列表模拟堆栈和队列

    对列特点:先进先出.后进后出 用列表insert.pop模拟进队出队: >>> l = [] >>> l.insert(0,'p1') >>> l ...

  8. Java Generics and Collections-2.4-2.5

    2.4 The Get and Put Principle Get and Put Principle: 用于取对象的泛型集合,声明为 <? extends T> 用于存对象的泛型集合,声 ...

  9. cvc-complex-type.2.4.c: The matching wildcard is strict, but no declaration can be found for element 'mvc:annotation-driven'.

    spring 配置文件报错报错信息:cvc-complex-type.2.4.c: The matching wildcard is strict, but no declaration can be ...

  10. C Primer Plus 学习体会

    本月刚刚开始学习<C primer plus>,之前课上草草学过一遍,讲到指针就结束了.现在重新开始看感觉难度不大只是刚开始接触有些语言细节比较琐碎.学习这一周的体会如下: 诸多前辈推荐的 ...