1、tf.where

https://blog.csdn.net/ustbbsy/article/details/79564828

2、tf.less

   tf.less(x,y,name=None)

   返回bool型tensor,返回逐元素x<y比较的结果

3、tf.gather

   根据索引值,将对应tensor的元素提取出来,组成新的tensor

   https://blog.csdn.net/Cyiano/article/details/76087747

4、tf.train.exponential_decay

 tf.train.exponential_decay(
    learning_rate,
    global_step,
    decay_steps,
    decay_rate,
    staircase=False,
    name=None
)
decayed_learning_rate = learning_rate *
                        decay_rate ^ (global_step / decay_steps)
当staircase=True时,(global_step / decay_steps)取整,即每decay_step次迭代时,lr*decay_rate
https://www.tensorflow.org/api_docs/python/tf/train/exponential_decay

5、name_scope和variable_scope

        (1) tf.variable_scope`和`tf.get_variable`必须要搭配使用(全局scope除外),为share提供支持。

   (2) tf.Variable`可以单独使用,也可以搭配`tf.name_scope`使用,给变量分类命名,模块化。

   (3) tf.Variable`和`tf.variable_scope`搭配使用不伦不类,不是设计者的初衷。

https://www.zhihu.com/question/54513728

6、SAME和VALID

   https://blog.csdn.net/wuzqchom/article/details/74785643

7、tf.gathertf.gather_nd

  根据索引,得到新的tensor

https://blog.csdn.net/orangefly0214/article/details/81634310

https://blog.csdn.net/liyaoqing/article/details/54842384

8、Tensorflow中Graph和Session的关系

https://blog.csdn.net/xg123321123/article/details/78017997

9、TF的数据读取方式

https://zhuanlan.zhihu.com/p/30751039

10、tf.scatter_nd

gather_nd的反操作

https://www.w3cschool.cn/tensorflow_python/tensorflow_python-led42j40.html

11、categorical_crossentropy VS. sparse_categorical_crossentropy的区别

https://www.cnblogs.com/shizhh/p/9662545.html

  • 如果你的 targets 是 one-hot 编码,用 categorical_crossentropy

    •   one-hot 编码:[0, 0, 1], [1, 0, 0], [0, 1, 0]
  • 如果你的 tagets 是 数字编码 ,用 sparse_categorical_crossentropy

    •   数字编码:2, 0, 1

12、tf.layers.conv2d_transpose 反卷积

反卷积的过程
           Step 1 扩充: 将 inputs 进行填充扩大。扩大的倍数与strides有关。扩大的方式是在元素之间插strides - 1 个 0
           Step 2 卷积: 对扩充变大的矩阵,用大小为kernel_size卷积核做卷积操作,这样的卷积核有filters个,并且这里的步长为1(与参数strides无关,一定是1)
           https://blog.csdn.net/weiwei9363/article/details/78954063

13、Embedding层的作用

https://fuhailin.github.io/Embedding/

14、eager模式:以动态图的方式运行,无需sess.run就能出结果

import tensorflow.contrib.eager as tfe

tfe.enable_eager_execution()

15、这位网友踩过的一些坑,马克一下

https://zhuanlan.zhihu.com/p/66434370

16、tf.control_dependencies()

此函数指定某些操作执行的依赖关系,   在执行完 a,b 操作之后,才能执行 c,d 操作。意思就是 c,d 操作依赖 a,b 操作

https://blog.csdn.net/huitailangyz/article/details/85015611

 with tf.control_dependencies([a, b]):
c = ....
d = ...

17、tf.GraphKeys.UPDATE_OPS

tensorflow的计算图中内置的一个集合,其中会保存一些需要在训练操作之前完成的操作,并配合tf.control_dependencies函数使用。

这偏博客举了一个bn的例子   https://blog.csdn.net/huitailangyz/article/details/85015611

tf的一些基本用法的更多相关文章

  1. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  2. deep_learning_Function_tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法

    [Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值 ...

  3. 【转载】 tf.split函数的用法

    原文地址: https://blog.csdn.net/uestc_c2_403/article/details/73350457 由于tensorflow 版本更新问题   用法略有修改 ----- ...

  4. tf.nn.embedding_lookup()的用法

    函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, ...

  5. tensorflow 的tf.split函数的用法

    将张量进行切分 tf.split( value, num_or_size_splits, axis=0, num=None, name='split' ) value: 待切分的张量 num_or_s ...

  6. tf.transpose函数的用法讲解

    tf.transpose函数中文意思是转置,对于低维度的转置问题,很简单,不想讨论,直接转置就好(大家看下面文档,一看就懂). tf.transpose(a, perm=None, name='tra ...

  7. [TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 ...

  8. tf.nn.softmax_cross_entropy_with_logits的用法

    http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...

  9. tf.nn.in_top_k的用法

    tf.nn.in_top_k组要是用于计算预测的结果和实际结果的是否相等,返回一个bool类型的张量,tf.nn.in_top_k(prediction, target, K):prediction就 ...

随机推荐

  1. ftm国际化解决方案

    记录一下踩过的坑,在使用ftm:message的时候我发现这个的国际化是依赖于本地浏览器的语言环境的!关于自主设置这个语言的方法有如下3种:(个人建议使用第二种,可以更加灵活且有效!第一种我这边没有生 ...

  2. 开启ucosii的移植之旅

    开启ucosii的移植之旅: 4.6.1.移植和硬件平台的关系 (1)只要是cortex-m3内核内核的soc移植差异都不大. 同内核同soc的不同开发板移植差异都不大. 不同内核的开发板移植难度大, ...

  3. 为知笔记Linux版编译使用记录

    本文档长期不定时更新,根据使用情况进行反馈. 目录 编译 Error creating SSL context 无法输入中文 如何打包使用 桌面图标 Markdown Windows 版本差异 常用快 ...

  4. BZOJ2127Happiness

    题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...

  5. java的集合:List、Set和Map

    虚线是接口,实线是实现类: 集合能够解决的问题:集合可以丽杰为是一种更高级的数组,可以保存多条数据 本质:java官方开发人员基于java的一些基础内容(数组等等)创建了一些接口和类,然后使用这些接口 ...

  6. numba学习教程

    一.对于python的基础介绍 Python是一种高效的动态编程语言,广泛用于科学,工程和数据分析应用程序..影响python普及的因素有很多,包括干净,富有表现力的语法和标准数据结构,全面的“电池包 ...

  7. ACM-自学之旅

    分类 知识清单 数据结构 链式前向星 树状数组 线段树 线段树的区间合并 基于ST表格的RMQ 图论 最近公共祖先 树的直径.树的重心与树的点分治 树的最小支配集,最小点覆盖与最大独立集 求无向连通图 ...

  8. Linux uniq 命令

    Linux uniq 命令  Linux 命令大全 Linux uniq 命令用于检查及删除文本文件中重复出现的行列,一般与 sort 命令结合使用. uniq 可检查文本文件中重复出现的行列. 语法 ...

  9. StackExchange.Redis 异步超时解决方案

    Timeout awaiting response (outbound=0KiB, inbound=45417KiB, 5891ms elapsed, timeout is 5000ms), comm ...

  10. meterpreter基础命令大全

    meterpreter meterpreter是Metasploit框架中的一个扩展模块,作为溢出成功以后的攻击载荷使用.为后渗透提供了很多便捷之处 基础命令 我们进入meterpreter之后,键入 ...