Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径。

它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径。

举例说明最优子结构性质,上图中1号到5号的最短路径序列<1,2,4,5>,其子序列<1,2,4>也是最短路径。

在动态规划算法中,处于首要位置、且也是核心理念之一的就是状态的定义。

动态转移的基本思想可以认为是建立起某一状态和之前状态的一种转移表示。

d[k][i][j]定义为“只能使用第1号到第k号点作为中间媒介时,点i到点j之间的最短路径长度”。

按照前面的定义,d[k][i][j]是一种使用1号到k号点的状态,可以想办法把这个状态通过动态转移,规约到使用1号到(k-1)号的状态,即d[k-1][i][j]。

对于d[k][i][j](即使用1号到k号点中的所有点作为中间媒介时,i和j之间的最短路径),可以分为两种情况:

(I)i到j的最短路不经过k;

(II)i到j的最短路经过了k。

不经过点k的最短路情况下,d[k][i][j]=d[k-1][i][j]。

经过点k的最短路情况下,d[k][i][j]=d[k-1][i][k]+d[k-1][k][j]。

因此,综合上述两种情况,便可以得到Floyd算法的动态转移方程:

d[k][i][j] = min(d[k-1][i][j], d[k-1][i][k]+d[k-1][k][j])(k,i,j∈[1,n])

在这里,需要注意上述动态转移方程的初始(边界)条件,即d[0][i][j]=w(i, j),

也就是说在不使用任何点的情况下(“松弛操作”的最初),两点之间最短路径的长度就是两点之间边的权值。

方法:“松弛”点,“五行代码”通过n-1次松弛节点

参考资料:https://www.cnblogs.com/chenying99/p/3932877.html

图论之最短路径floyd算法的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)

    7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...

  3. 最短路径(Floyd)算法

    #include <stdio.h>#include <stdlib.h>/* Floyd算法 */#define VNUM 5#define MV 65536int P[VN ...

  4. 单源最短路径——Floyd算法

    正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意 ...

  5. 最短路径Floyd算法【图文详解】

    Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...

  6. 【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?

    简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以 ...

  7. 最短路径—Floyd算法

    Floyd算法 所有顶点对之间的最短路径问题是:对于给定的有向网络G=(V,E),要对G中任意两个顶点v,w(v不等于w),找出v到w的最短路径.当然我们可以n次执行DIJKSTRA算法,用FLOYD ...

  8. 最短路径——Floyd算法(含证明)

    通过dij,ford,spfa等算法可以快速的得到单源点的最短路径,如果想要得到图中任意两点之间的最短路径,当然可以选择做n遍的dij或是ford,但还有一个思维量较小的选择,就是floyd算法. 多 ...

  9. 多源最短路径Floyd算法

    多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编 ...

随机推荐

  1. 爬虫框架Scrapy 之(四) --- scrapy运行原理(管道)

    解析后返回可迭代对象 这个对象返回以后就会被爬虫重新接收,然后进行迭代 通过scrapy crawl budejie -o xx.josn/xx.xml/xx.csv 将迭代数据输出到json.xml ...

  2. 【ShaderToy】抗锯齿相关函数

    *示例代码可以直接在ShaderToy中运行. *我放在这里咯ShaderToy基础学习中~欢迎交流(ノ>ω<)ノ 先上未抗锯齿的两个圆形图案,可以清楚看清图案边缘像素块,即“锯齿”. 附 ...

  3. JavaFX - 富互联网应用

    JavaFX教程™ --必看https://www.yiibai.com/javafx /================= 富互联网应用 是那些提供与Web应用程序类似的功能,并可作为桌面应用程序体 ...

  4. 基于Spring注解搭建SpringMVC项目

    在2018寒冬,我下岗了,因为我的左脚先迈进了公司的大门.这不是重点,重点是我扑到了老板小姨子的怀里. 网上好多教程都是基于XML的SpringMVC,想找一篇注解的,但是写的很模糊,我刚好学到这里, ...

  5. python3排序 sorted(key=lambda)

    使用python对列表(list)进行排序,说简单也简单,说复杂也复杂,我一开始学的时候也搞不懂在说什么,只能搜索一些英文文章看看讲解,现在积累了一些经验,写在这里跟大家分享,我们通过例子来详细解释一 ...

  6. 【Selenium】各浏览器(firefox,chrome,ie)驱动下载地址汇总

    前两天使用Selenium分布式时,总抛出异常.更新成最新驱动可以解决.其中chrome异常如下, "platform": "WINDOWS" File &qu ...

  7. hdu 1241 Oil Deposits (简单搜索)

    题目:   The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. ...

  8. systemctl: command not found

    可以使用service代替 service语法有一点区别 这里演示了错误语法和正确语法

  9. ssh登录,爬坑系列

    最近在实验室弄ssh登录,结果被虐了,要注意以下: 1.主机名不能包括   -     _    !  等非法字符. 2.如果hadoop格式化时,报:“SHUTDOWN_MSG: Shutting ...

  10. 2018-2019-2 20165314《网络对抗技术》Exp1 PC平台逆向破解

    实践目的 本次实践的对象是一个名为pwn1的linux可执行文件.该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShel ...