Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学
Sasha and Interesting Fact from Graph Theory
n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m}
然后就没啥难度了。。。
#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int power(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1LL * ans * a % mod;
a = 1LL * a * a % mod; b >>= ;
}
return ans;
} int F[N], Finv[N], inv[N];
int C(int n, int m) {
if(n < || n < m) return ;
return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod;
} int n, m, a, b; int main() {
inv[] = F[] = Finv[] = ;
for(int i = ; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++) F[i] = 1LL * F[i - ] * i % mod;
for(int i = ; i < N; i++) Finv[i] = 1LL * Finv[i - ] * inv[i] % mod;
scanf("%d%d%d%d", &n, &m, &a, &b);
int ans = ;
for(int i = ; i <= n; i++) {
if(i < n) add(ans, 1LL * C(n - , i - ) * F[i - ] % mod * C(m - , i - ) % mod * power(m, n - i) % mod * i % mod * power(n, n - i - ) % mod);
else add(ans, 1LL * F[i - ] * C(m - , i - ) % mod);
}
printf("%d\n", ans);
return ;
} /*
*/
Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学的更多相关文章
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...
- CF1109D Sasha and Interesting Fact from Graph Theory
CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...
- Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)
大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...
- Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)
题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...
- CF1109DSasha and Interesting Fact from Graph Theory(数数)
题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...
- Codeforces 316E3 线段树 + 斐波那切数列 (看题解)
最关键的一点就是 f[ 0 ] * a[ 0 ] + f[ 1 ] * a[ 1 ] + ... + f[ n - 1] * a[ n - 1] f[ 1 ] * a[ 0 ] + f[ 2 ] * ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces 703D Mishka and Interesting sum 离线+树状数组
链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...
随机推荐
- [BZOJ 2242] [SDOI 2011] 计算器
Description 你被要求设计一个计算器完成以下三项任务: 给定 \(y,z,p\),计算 \(y^z \bmod p\) 的值: 给定 \(y,z,p\),计算满足 \(xy≡ z \pmod ...
- Transaction check error: file /etc/rpm/macros.ghc-srpm from install of redhat-rpm-config-9.1.0-80.el7.centos.noarch conflicts with file from package epel-release-6-8.noarch Error Summary ----------
./certbot-auto certonly 报错: Transaction check error: file /etc/rpm/macros.ghc-srpm from install of ...
- SDOI2017 Round2 详细题解
这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\ ...
- Linux下安装部署Samba共享盘的操作手册
简述 Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服务块)是一种在局域网上共享文件和打印机的 ...
- Numpy系列(十)- 掩码数组
简介 有时候数据集中存在缺失.异常或者无效的数值,我们可以标记该元素为被屏蔽(无效)状态. import numpy as np import numpy.ma as ma x = np.array( ...
- 安装mysql和xampp遇到问题
1.mysql的期望地址和配置的地址不一致: 解决方法:修改注册表 在附件命令提示符输入regedit 找[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Se ...
- [再寄小读者之数学篇](2014-09-22 distributions and square integrable functions)
Suppose that $f\in L^2$, $g\in \scrD'$, if $$\bex f=g,\mbox{ in }\scrD', \eex$$ then $f=g\in L^2$. I ...
- 关于使用 JSON.parse()报 VM141:1 Uncaught SyntaxError 的解决方案
今天在使用ajax的后期,老师问我们怎么json解析对象,然后上百度搜了一下:大概有三个方式 var str = '{"name":"小明","age ...
- ST表学习笔记
ST表是一种利用DP思想求解最值的倍增算法 ST表常用于解决RMQ问题,即求解区间最值问题 接下来以求最大值为例分步讲解一下ST表的建立过程: 1.定义 f[i][j]表示[i,i+2j-1]这个长度 ...
- 推荐安全且匿名的邮箱 ProtonMail -- PGP算法
==以前一直以为平时所用的邮箱是绝对安全的,没有深思它的安全性. 然而你要“犯罪”不留任何痕迹的话,呵呵. 国内应该没有类似 ProtonMail 的邮箱,-->去了解一下 ========== ...