Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学
Sasha and Interesting Fact from Graph Theory
n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m}
然后就没啥难度了。。。
#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int power(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1LL * ans * a % mod;
a = 1LL * a * a % mod; b >>= ;
}
return ans;
} int F[N], Finv[N], inv[N];
int C(int n, int m) {
if(n < || n < m) return ;
return 1LL * F[n] * Finv[m] % mod * Finv[n - m] % mod;
} int n, m, a, b; int main() {
inv[] = F[] = Finv[] = ;
for(int i = ; i < N; i++) inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++) F[i] = 1LL * F[i - ] * i % mod;
for(int i = ; i < N; i++) Finv[i] = 1LL * Finv[i - ] * inv[i] % mod;
scanf("%d%d%d%d", &n, &m, &a, &b);
int ans = ;
for(int i = ; i <= n; i++) {
if(i < n) add(ans, 1LL * C(n - , i - ) * F[i - ] % mod * C(m - , i - ) % mod * power(m, n - i) % mod * i % mod * power(n, n - i - ) % mod);
else add(ans, 1LL * F[i - ] * C(m - , i - ) % mod);
}
printf("%d\n", ans);
return ;
} /*
*/
Codeforces 1109D Sasha and Interesting Fact from Graph Theory (看题解) 组合数学的更多相关文章
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory
Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 解题思路: 这题我根本不会做,是周指导带飞我. 首先对于当前已经有 \(m ...
- Codeforces 1109D. Sasha and Interesting Fact from Graph Theory 排列组合,Prufer编码
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1109D.html 题意 所有边权都是 [1,m] 中的整数的所有 n 个点的树中,点 a 到点 b 的距离 ...
- CF1109D Sasha and Interesting Fact from Graph Theory
CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计 ...
- Sasha and Interesting Fact from Graph Theory CodeForces - 1109D (图论,计数,Caylay定理)
大意: 求a->b最短路长度为m的n节点树的个数, 边权全部不超过m 枚举$a$与$b$之间的边数, 再由拓展$Caylay$定理分配其余结点 拓展$Caylay$定理 $n$个有标号节点生成k ...
- Codeforces1113F. Sasha and Interesting Fact from Graph Theory(组合数学 计数 广义Cayley定理)
题目链接:传送门 思路: 计数.树的结构和边权的计数可以分开讨论. ①假设从a到b的路径上有e条边,那么路径上就有e-1个点.构造这条路径上的点有$A_{n-2}^{e-1}$种方案: ②这条路径的权 ...
- CF1109DSasha and Interesting Fact from Graph Theory(数数)
题面 传送门 前置芝士 Prufer codes与Generalized Cayley's Formula 题解 不行了脑子已经咕咕了连这么简单的数数题都不会了-- 首先这两个特殊点到底是啥并没有影响 ...
- Codeforces 316E3 线段树 + 斐波那切数列 (看题解)
最关键的一点就是 f[ 0 ] * a[ 0 ] + f[ 1 ] * a[ 1 ] + ... + f[ n - 1] * a[ n - 1] f[ 1 ] * a[ 0 ] + f[ 2 ] * ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces 703D Mishka and Interesting sum 离线+树状数组
链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...
随机推荐
- 深入理解JVM(2)——运行时数据区
1.运行时数据区 1.1.程序计数器 记录当前线程正在执行的字节码指令的地址,如果正在执行的是 Native 方法,这个计数器值则为空. 1.2.虚拟机栈 每个 Java 方法在执行的同时会创建一个栈 ...
- js拖拽效果详细讲解
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 小米平板2 win10 MIUI互刷教程
在这篇文章中,我们会为大家提供Windows 10版小米平板2刷入MIUI和MIUI版小米平板2刷入Windows 10的两组教程. 不过从Win 10刷MIUI需要用原生安卓系统过渡来统一bios版 ...
- busybox(二)编译
title: busybox(二)编译 tag: arm date: 2018-11-13 23:14:58 --- busybox(二)编译 解压,源码包在busybox-1.7.0.tar.bz2 ...
- 09--STL关联容器(map/multimap)
一:map/multimap的简介 map是标准的关联式容器,一个map是一个键值对序列,即(key,value)对.它提供基于key的快速检索能力. map中key值是唯一的.集合中的元素按一定的顺 ...
- 第一次连接数据库mongodb踩的坑
类型匹配错误,参数要写对了,name与age一一对应. 如果没找到错误就把异常打印出来. await person.save(function(err) { if(err) console.log(e ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1. 粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...
- $A,B$ 实对称 $\ra\tr((AB)^2)\leq \tr(A^2B^2)$
设 $A,B$ 是 $n$ 阶实对称矩阵. 试证: $\tr((AB)^2)\leq \tr(A^2B^2)$. 又问: 等号何时成立? 证明: 由 $$\bex \sum_i \sez{\su ...
- iTOP-iMX6UL全能板-linux-usb-wifi的使用
本文档介绍的是在本文档介绍的是在 Linux 系统环境下iTOP-imx6ul全能版 usb wifi 连接路由器上网 实验调试步骤.我们使用的是 imx6ul 全功能底板. 1 硬件 本文档测试使用 ...
- java核心36
1 Java平台 Java采用的是解释和编译混合的模式.它首先通过javac将源码编译成字节码文件class.然后在运行的时候通过解释器或者JIT将字节码转换成最终的机器码.只是用解释器的缺点:抛弃了 ...