import tensorflow as tf

def initialize_uninitialized(sess):
global_vars = tf.global_variables()
is_not_initialized = sess.run([tf.is_variable_initialized(var) for var in global_vars])
not_initialized_vars = [v for (v, f) in zip(global_vars, is_not_initialized) if not f] print [str(i.name) for i in not_initialized_vars] # only for testing
if len(not_initialized_vars):
sess.run(tf.variables_initializer(not_initialized_vars))

上述代码是用于初始化剩余未被初始化的变量的函数

需要注意的是,我们一般采用tf.global_variables_initializer()作为初始化op会覆盖原来通过saver.restore()方式加载的变量状态,因此,不可采用此方法。

另外,如果采用sess.run(tf.global_variables_initializer())在 saver.restore()之前,是不起作用的,原因未知,restore函数似乎能屏蔽掉global_variables_initializer()

的初始化效果。

选择性加载变量时可以采用scope进行隔离,提取出name:var这样的键值对的字典作为saver的加载根据。如下代码:

# stage_merged.py
# transform from single frame into multi-frame enhanced single raw
from __future__ import division
import os, time, scipy.io
import tensorflow as tf
import numpy as np
import rawpy
import glob
from model_sid_latest import network_stages_merged, network_my_unet, network_enhance_raw
import platform
from PIL import Image if platform.system() == 'Windows':
data_dir = 'D:/data/Sony/dataset/bbf-raw-selected/'
elif platform.system() == 'Linux':
data_dir = './dataset/bbf-raw-selected/'
else:
print('platform not supported!')
assert False os.environ["CUDA_VISIBLE_DEVICES"] = ""
checkpoint_dir = './model_stage_merged/'
result_dir = './out_stage_merged/'
log_dir = './log_stage_merged/'
learning_rate = 1e-4
epoch_bound = 20000
save_model_every_n_epoch = 10 if platform.system() == 'Windows':
output_every_n_steps = 1
else:
output_every_n_steps = 100 if platform.system() == 'Windows':
ckpt_enhance_raw = 'D:/model/enhance_raw/'
ckpt_raw2rgb = 'D:/model/raw2rgb-c1/'
else:
ckpt_enhance_raw = './model/enhance_raw/'
ckpt_raw2rgb = './model/raw2rgb-c1/' # BBF100-2
bbf_w = 4032
bbf_h = 3024 patch_w = 512
patch_h = 512 max_level = 1023
black_level = 64 patch_w = 512
patch_h = 512 # set up dataset
input_files = glob.glob(data_dir + '/*.dng')
input_files.sort() def preprocess(raw, bl, wl):
im = raw.raw_image_visible.astype(np.float32)
im = np.maximum(im - bl, 0)
return im / (wl - bl) def pack_raw_bbf(path):
raw = rawpy.imread(path)
bl = 64
wl = 1023
im = preprocess(raw, bl, wl)
im = np.expand_dims(im, axis=2)
H = im.shape[0]
W = im.shape[1]
if raw.raw_pattern[0, 0] == 0: # CFA=RGGB
out = np.concatenate((im[0:H:2, 0:W:2, :],
im[0:H:2, 1:W:2, :],
im[1:H:2, 1:W:2, :],
im[1:H:2, 0:W:2, :]), axis=2)
elif raw.raw_pattern[0,0] == 2: # BGGR
out = np.concatenate((im[1:H:2, 1:W:2, :],
im[0:H:2, 1:W:2, :],
im[0:H:2, 0:W:2, :],
im[1:H:2, 0:W:2, :]), axis=2)
elif raw.raw_pattern[0,0] == 1 and raw.raw_pattern[0,1] == 0: # GRBG
out = np.concatenate((im[0:H:2, 1:W:2, :],
im[0:H:2, 0:W:2, :],
im[1:H:2, 0:W:2, :],
im[1:H:2, 1:W:2, :]), axis=2)
elif raw.raw_pattern[0,0] == 1 and raw.raw_pattern[0,1] == 2: # GBRG
out = np.concatenate((im[1:H:2, 0:W:2, :],
im[0:H:2, 0:W:2, :],
im[0:H:2, 1:W:2, :],
im[1:H:2, 1:W:2, :]), axis=2)
else:
assert False
wb = np.array(raw.camera_whitebalance)
wb[3] = wb[1]
wb = wb / wb[1]
out = np.minimum(out * wb, 1.0) h_, w_ = im.shape[0]//2, im.shape[1]//2
out_16bit_ = np.zeros([h_, w_, 4], dtype=np.uint16)
out_16bit_[:, :, :] = np.uint16(out[:, :, :] * (wl - bl))
del out
return out_16bit_ tf.reset_default_graph()
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
in_im = tf.placeholder(tf.float32, [1, patch_h, patch_w, 4], name='input') with tf.variable_scope('enhance_raw', reuse=tf.AUTO_REUSE):
enhanced_raw = network_enhance_raw(in_im, patch_h, patch_w)
with tf.variable_scope('raw2rgb', reuse=tf.AUTO_REUSE):
gt_im = network_my_unet(enhanced_raw, patch_h, patch_w)
with tf.variable_scope('stage_merged', reuse=tf.AUTO_REUSE):
out_im = network_stages_merged(in_im, patch_h, patch_w) gt_im_cut = tf.minimum(tf.maximum(gt_im, 0.0), 1.0)
out_im_cut = tf.minimum(tf.maximum(out_im, 0.0), 1.0)
ssim_loss = 1 - tf.image.ssim_multiscale(gt_im_cut[0], out_im_cut[0], 1.0)
l1_loss = tf.reduce_mean(tf.reduce_sum(tf.abs(gt_im_cut - out_im_cut), axis=-1))
l2_loss = tf.reduce_mean(tf.reduce_sum(tf.square(gt_im_cut - out_im_cut), axis=-1))
G_loss = ssim_loss
# G_loss = l1_loss + l2_loss tf.summary.scalar('G_loss', G_loss)
tf.summary.scalar('L1 Loss', l1_loss)
tf.summary.scalar('L2 Loss', l2_loss) ########## LOADING MODELS #############
scope_ = 'enhance_raw'
enhance_raw_var_list = tf.global_variables(scope_)
enhance_raw_var_names = [v.name.replace(scope_+'/', '').replace(':0', '') for v in enhance_raw_var_list]
enhance_raw_map = dict()
for i in range(len(enhance_raw_var_names)):
enhance_raw_map[enhance_raw_var_names[i]] = enhance_raw_var_list[i] saver_enhance_raw = tf.train.Saver(var_list=enhance_raw_map)
ckpt = tf.train.get_checkpoint_state(ckpt_enhance_raw)
if ckpt:
saver_enhance_raw.restore(sess, ckpt.model_checkpoint_path)
print('loaded enhance_raw model: ' + ckpt.model_checkpoint_path)
else:
print('Error: failed to load enhance_raw model!')
#----------------------------------------
scope_ = 'raw2rgb'
raw2rgb_var_list = tf.global_variables(scope_)
raw2rgb_var_names = [v.name.replace(scope_+'/', '').replace(':0', '') for v in raw2rgb_var_list]
raw2rgb_map = dict()
for i in range(len(raw2rgb_var_names)):
raw2rgb_map[raw2rgb_var_names[i]] = raw2rgb_var_list[i] saver_raw2rgb = tf.train.Saver(var_list=raw2rgb_map)
ckpt = tf.train.get_checkpoint_state(ckpt_raw2rgb)
if ckpt:
saver_raw2rgb.restore(sess, ckpt.model_checkpoint_path)
print('loaded raw2rgb model: ' + ckpt.model_checkpoint_path)
else:
print('Error: failed to load raw2rgb model!')
assert False
#---------------------------------------- def initialize_uninitialized(sess):
global_vars = tf.global_variables()
bool_inits = sess.run([tf.is_variable_initialized(var) for var in global_vars])
uninit_vars = [v for (v, b) in zip(global_vars, bool_inits) if not b]
for v in uninit_vars:
print(str(v.name))
if len(uninit_vars):
sess.run(tf.variables_initializer(uninit_vars)) t_vars = tf.trainable_variables(scope='stage_merged')
lr = tf.placeholder(tf.float32)
G_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss, var_list=t_vars) saver = tf.train.Saver(var_list=t_vars)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt.model_checkpoint_path)
print('loaded ' + ckpt.model_checkpoint_path)
else:
sess.run(tf.variables_initializer(var_list=t_vars))
initialize_uninitialized(sess)
#######################################
if not os.path.isdir(result_dir):
os.mkdir(result_dir) input_images = [None] * len(input_files)
g_loss = np.zeros([500, 1]) merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(log_dir, sess.graph) steps = 0
st = time.time() for epoch in range(0, epoch_bound):
for ind in np.random.permutation(len(input_images)):
steps += 1
if input_images[ind] is None:
input_images[ind] = np.expand_dims(pack_raw_bbf(input_files[ind]), axis=0) # random cropping
xx = np.random.randint(0, bbf_w // 2 - patch_w)
yy = np.random.randint(0, bbf_h // 2 - patch_h)
input_patch = np.float32(input_images[ind][:, yy:yy + patch_h, xx:xx + patch_w, :]) / (
max_level - black_level) # random flipping
if np.random.randint(2, size=1)[0] == 1: # random flip
input_patch = np.flip(input_patch, axis=1)
if np.random.randint(2, size=1)[0] == 1:
input_patch = np.flip(input_patch, axis=0)
if np.random.randint(2, size=1)[0] == 1: # random transpose
input_patch = np.transpose(input_patch, (0, 2, 1, 3)) summary, _, G_current, output, gt_im_ = sess.run(
[merged, G_opt, G_loss, out_im_cut, gt_im_cut],
feed_dict={
in_im: input_patch,
lr: learning_rate})
g_loss[steps % len(g_loss)] = G_current if steps % output_every_n_steps == 0:
loss_ = np.mean(g_loss[np.where(g_loss)])
cost_ = (time.time() - st) / output_every_n_steps
st = time.time()
print("%d %d Loss=%.6f Speed=%.6f" % (epoch, steps, loss_, cost_))
writer.add_summary(summary, global_step=steps)
temp = np.concatenate(
(input_patch[0, :, :, :3],
gt_im_[0, 0:patch_h*2:2, 0:patch_w*2:2, :3],
output[0, 0:patch_h*2:2, 0:patch_w*2:2, :3]), axis=1)
scipy.misc.toimage(temp * 255, high=255, low=0, cmin=0, cmax=255) \
.save(result_dir + '/%d_%d.jpg' % (epoch, steps)) # clean up the memory if necessary
if platform.system() == 'Windows':
input_images[ind] = None if epoch % save_model_every_n_epoch == 0:
saver.save(sess, checkpoint_dir + '%d.ckpt' % epoch)
print('model saved.')

Tensorflow选择性初始化图中的变量的更多相关文章

  1. AI学习---TensorFlow框架介绍[图+会话+张量+变量OP+API]

    TensorFlow的数据流图 TensorFlow的结构分析: 图 + 会话 TensorFlow = 构图阶段(数据与操作的执行步骤被描绘出一个图) + 执行图阶段(使用回话执行构建好的图中操作) ...

  2. Tensorflow替换静态图中的OP

    import tensorflow as tf import collections from tensorflow.core.framework import tensor_shape_pb2 # ...

  3. java初始化过程中成员变量

    package day01; class Base{ int j; //1.j=0 Base(){ add(1); //2.调用子类add()方法 System.out.println(j); //4 ...

  4. 2、Tensorflow中的变量

    2.Tensorflow中的变量注意:tf中使用 变量必须先初始化下面是一个使用变量的TF代码(含注释): # __author__ = "WSX" import tensorfl ...

  5. Tensorflow中的变量

    从初识tf开始,变量这个名词就一直都很重要,因为深度模型往往所要获得的就是通过参数和函数对某一或某些具体事物的抽象表达.而那些未知的数据需要通过学习而获得,在学习的过程中它们不断变化着,最终收敛达到较 ...

  6. TensorFlow中的变量和常量

    1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') ...

  7. 深度学习原理与框架-Tensorflow基本操作-Tensorflow中的变量

    1.tf.Variable([[1, 2]])  # 创建一个变量 参数说明:[[1, 2]] 表示输入的数据,为一行二列的数据 2.tf.global_variables_initializer() ...

  8. tensorflow 保存训练模型ckpt 查看ckpt文件中的变量名和对应值

    TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如 ...

  9. c++ 类与函数中static变量初始化问题(转)

    首先static变量只有一次初始化,不管在类中还是在函数中..有这样一个函数: void Foo() { ; // initialize std::cout << a; a++; } 里的 ...

随机推荐

  1. 【转】jenkins自动化部署项目7 -- 新建job(将服务代码部署在windows上)

    关于构建结束后jenkins会kill所有衍生子进程的官方解决方案:https://wiki.jenkins.io/display/JENKINS/Spawning+processes+from+bu ...

  2. 【JavaScript】轮播图

    代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <tit ...

  3. Angular.js指令

    ng-style   <input type="button" value="set color" ng-click="myStyle={col ...

  4. Mysql 聚合函数返回NULL

    [1]聚合函数返回NULL 当where条件不满足时,聚合函数sum().avg()的返回值为NULL. (1)源数据表 (2)如下SQL语句 SELECT sClass, COUNT(*) AS t ...

  5. spring boot常见问题

    1.什么是springboot 用来简化spring应用的初始搭建以及开发过程 使用特定的方式来进行配置(properties或yml文件) 创建独立的spring引用程序 main方法运行 嵌入的T ...

  6. drf 多表

    https://www.django-rest-framework.org/  官方站 https://www.django-rest-framework.org/tutorial/quickstar ...

  7. js 获取链接参数的方法

    方法1: /** * 获取链接上的参数 * string 需要获取的参数名称 */ var getHref = function(string){ var reg = new RegExp(" ...

  8. RHCSA

     系统管理 redhat 7 破解修改root密码 修改系统主机名 修改系统地址掩码网关 创建系统默认软件仓库 安装系统内核升级 绑定到外部验证服务LDAP.配置 autofs 用户组管理 创建用户组 ...

  9. golang设置title并获取窗口句柄

    package main import ( "fmt" "syscall" "github.com/lxn/win") func main( ...

  10. 《Java程序设计》课程实验要求

    目录 <Java程序设计>课程实验要求 注册实验楼账号 实验一 Java开发环境的熟悉 实验二<Java面向对象程序设计> 实验三 <敏捷开发与XP实践> 实验四 ...