Codeforces.1043F.Make It One(DP 容斥)
\(Description\)
给定\(n\)个数\(A_i\),求最少选出多少个数,使得它们的\(\gcd\)为\(1\)。
\(n,A_i\leq3\times10^5\)。
\(Solution\)
首先如果有解,答案不会超过\(7\)(\(7\)个质数的乘积就会大于\(300000\))(但是\(6\)个不会!所以答案可能是\(7\)的啊=-=zz如我)。
所以令\(f[i][j]\)表示选了\(i\)个数,使得它们\(\gcd=j\)的方案数。因为DP不好算考虑直接计数。
记\(cnt_i\)表示含有因子\(i\)的数的个数。
那么$$f[i][j]=C_{cnt_j}^i-\sum_{j\mid k,k\neq j}f[i][k]$$
判一下是否有\(f[i][1]>0\)即可。
复杂度\(O(7n\log n)\)。
//78ms 4500KB
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mod 1000000009
#define C(n,m) (n<m?0:1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod)
#define gc() getchar()
typedef long long LL;
const int N=3e5+5;
int f[N],cnt[N],fac[N],ifac[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod) k&1&&(t=1ll*t*x%mod);
return t;
}
int main()
{
int n=read(),mx=0;
for(int i=1,a; i<=n; ++i) mx=std::max(mx,a=read()), ++cnt[a];
if(cnt[1]) return puts("1"),0;
fac[0]=fac[1]=1;
for(int i=2; i<=n; ++i) fac[i]=1ll*i*fac[i-1]%mod;
ifac[n]=FP(fac[n],mod-2);
for(int i=n; i; --i) ifac[i-1]=1ll*i*ifac[i]%mod;
cnt[1]=n;
for(int i=2; i<=mx; ++i)
for(int j=i<<1; j<=mx; j+=i) cnt[i]+=cnt[j];
for(int i=2; i<=7; ++i)
{
for(int j=mx; j; --j)
{
LL tmp=C(cnt[j],i);
for(int k=j<<1; k<=mx; k+=j) tmp-=f[k];
f[j]=(tmp%mod+mod)%mod;
}
if(f[1]) return printf("%d\n",i),0;
}
puts("-1");
return 0;
}
Codeforces.1043F.Make It One(DP 容斥)的更多相关文章
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- codeforces 342D Xenia and Dominoes(状压dp+容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...
- Codeforces 1553I - Stairs(分治 NTT+容斥)
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序 ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- CF285E Positions in Permutations(dp+容斥)
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1] ...
随机推荐
- python之路day02--格式化输出、初始编码、运算符
格式化输出 格式化输出替换字符串.字符串中%占位符,,%%s就是代表百分号,不代表占位符s 字符串 stringd 数字 dight name = input('请输入你的名字:') age = in ...
- pytest 10 skip跳过测试用例
pytest.mark.skip可以标记无法在某些平台上运行的测试功能,或者你希望失败的测试功能 skip意味着只有在满足某些条件时才希望测试通过,否则pytest应该跳过运行测试.常见事例时非win ...
- 2019南昌邀请赛网络预选赛 I. Max answer(单调栈+暴力??)
传送门 题意: 给你你一序列 a,共 n 个元素,求最大的F(l,r): F(l,r) = (a[l]+a[l+1]+.....+a[r])*min(l,r); ([l,r]的区间和*区间最小值,F( ...
- openstack项目【day23】:keystone组件HTTP协议
阅读目录 一 为何要学习HTTP协议 二 用户上网过程 三 HTTP协议 part1 http协议概述 part2 请求协议 part3 响应协议 四 抓包分析HTTP协议 一 为何要学习HTTP协议 ...
- 异常捕获try----catch
如果try语句里有return,返回的是try语句块中变量值. 详细执行过程如下: 如果有返回值,就把返回值保存到局部变量中: 执行jsr指令跳到finally语句里执行: 执行完finally语句后 ...
- springMVC入门思路整理
- word20161226
1. condensed 英[kən'denst]美[kənˈdɛnst]v. (使) 变稠或变浓,浓缩( condense的过去式和过去分词 ); (使) 凝结; 简说,摘要,简述;[例句]The ...
- JVM--01
---恢复内容开始--- jdk jre jvm 的关系 java7的结构图 java8 jvm内存溢出 jdk /bin 目录下的jconsole java发展历史 oak:用在嵌入式设备上 相 ...
- 【原创】大数据基础之Spark(3)Spark Thrift实现原理及代码实现
spark 2.1.1 一 启动命令 启动spark thrift命令 $SPARK_HOME/sbin/start-thriftserver.sh 然后会执行 org.apache.spark.de ...
- 滑动时候报错:Unable to preventDefault inside passive event listener, 移动端滑动性能优化
https://www.jianshu.com/p/04bf173826aa 记录下 这篇帖子 解决办法1: 在touch的事件监听方法上绑定第三个参数{ passive: false }, 通过传 ...