方程的解_NOI导刊2010提高
给定x,求\(a_1+a_2+...+a_k=x^x\ mod\ 1000\)的正整数解解的组数,对于100%的数据,k≤100,x≤2^31-1。
解
显然x是可以快速幂得到答案的,而该问题显然是组合计数的问题,换一种解释即\(b=x^x\)个相同的数能怎样放进k个有标号盒子。
思路一
而无法解决无标号放入有标号。于是逆向思维,把有标号盒子放入无标号\(b\)个数,有标号盒子可以重复放,无标号$b数个只能被放一次,因为是正整数的缘故,所以盒子必须保证放过,故事先构造放满,再套用可重组合公式,有
\]
思路二
注意到组合问题很难解决,故考虑排列,而这又是划分问题,故考虑全排列划分模型,即有k-1个0与b个1进行全排列,0去划分1,但是注意到要的是正整数解,于是0之间必须有1,于是事先填好1,有
\]
得到公式后根据所得条件按质因数分解型的阶乘高精处理即可。
参考代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define yyb 1000
using namespace std;
struct lll{
short num[5000];
il lll(){num[0]=1;}
il void clear(){memset(num,0,sizeof(num)),num[0]|=true;}
template<class free>
il void operator=(free x){
num[0]=0;
while(x)num[++num[0]]=x%10,x/=10;
}
il lll operator*(lll x){
lll y;y.clear();
for(ri int i(1),j,k;i<=num[0];++i){
k=0;
for(j=1;j<=x.num[0];++j)
y.num[i+j-1]+=num[i]*x.num[j]+k,
k=y.num[i+j-1]/10,y.num[i+j-1]%=10;
y.num[i+x.num[0]]+=k;
}y.num[0]=num[0]+x.num[0];
while(!(y.num[y.num[0]])&&y.num[0]>1)--y.num[0];
return y;
}template<class free>
il lll operator^(free y){
lll x(*this),ans;ans=1;
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
il void print(){
for(ri int i(num[0]);i;--i)putchar(num[i]+48);
}
};
lll xdk[250];
bool check[1100];
int prime[250],sp[250],tot;
il int pow(int,int);
il void c(int,int),sieve(int);
int main(){
int k,x;
scanf("%d%d",&k,&x),x=pow(x%yyb,x);
sieve(x-1),c(x-1,k-1);
return 0;
}
il void sieve(int n){
for(ri int i(2),j;i<=n;++i){
if(!check[i])prime[++tot]=i,xdk[tot]=i;
for(j=1;j<=tot&&prime[j]*i<=n;++j){
check[i*prime[j]]|=true;
if(!(i%prime[j]))break;
}
}
}
il void c(int n,int r){
if(n<r)return (void)(puts("0"));
int i,j;lll ans;ans=1;
for(i=1;i<=tot;++i)
for(j=n;j;j/=prime[i])sp[i]+=j/prime[i];
for(i=1;i<=tot;++i)
for(j=r;j;j/=prime[i])sp[i]-=j/prime[i];
for(i=1;i<=tot;++i)
for(j=n-r;j;j/=prime[i])sp[i]-=j/prime[i];
for(i=1;i<=tot;++i)ans=ans*(xdk[i]^sp[i]);ans.print();
}
il int pow(int x,int y){
int ans(1);while(y){
if(y&1)ans=ans*x%yyb;
x=x*x%yyb;y>>=1;
}return ans;
}
方程的解_NOI导刊2010提高的更多相关文章
- P1771 方程的解_NOI导刊2010提高(01)
P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...
- 方程的解_NOI导刊2010提高(01) 组合数
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- 洛谷P1771 方程的解_NOI导刊2010提高(01)
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- 洛谷 P1777 帮助_NOI导刊2010提高(03) 解题报告
P1777 帮助_NOI导刊2010提高(03) 题目描述 Bubu的书架乱成一团了!帮他一下吧! 他的书架上一共有n本书.我们定义混乱值是连续相同高度书本的段数.例如,如果书的高度是30,30,31 ...
- 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)
P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...
- P1799 数列_NOI导刊2010提高(06)
P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...
- 【洛谷】【堆】P1801 黑匣子_NOI导刊2010提高(06)
[题目描述:] Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命令只有两 ...
- P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化
多重背包, 要求 \(N\log N\) 复杂度 Solution 众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - ...
- P1801 黑匣子_NOI导刊2010提高(06)
P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...
随机推荐
- java的冒泡排序
public interface Sorter{ public <T extends Comparable<T>> void sort(T[] list); //定义两个待排序 ...
- Vue相关开源项目库汇总
https://github.com/opendigg/awesome-github-vue http://www.opendigg.com/tags/front-vue README.md 内容 U ...
- docker容器实战-----初级<2>
第二章 docker容器 1. Docker是通过内核虚拟化技术(namespaces及cgroups cpu.内存.磁盘io等)来提供容器的资源隔离与安全保障等.由于Docker通过操作系统层的虚 ...
- dom反转
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- pycharm 打开json 文件 \2 自动成了转义字符
打开json 文件 \2 自动成了转义字符 暂时只发现在( \2 ) \ 后面为数字的情况下会出现转义json 文件为是指:在pycharm 中新建 file 后缀为json的文件 如: 1234.j ...
- 2019 Lonsdor K518S VS K518ISE
2019 Lonsdor K518S VS K518ISE: The same: IMMO capabilities + Vehicle coverage. The difference: The u ...
- 安卓使用TextView实现图片加文字说明
背景:通讯录列表,每个单元格显示头像+名字,且头像显示圆形 方案一:ImageView + TextView 方案二:只用TextView + drawableLeft 属性 <TextView ...
- linux执行jmeter脚本解决响应数据为空
Linux服务器用命令执行了jmeter脚本,在本地查看结果时发现结果树种的“请求.响应数据”都显示为空,有错误日志中也看不出所以然,请看演示! 1 ,先执行脚本:执行成功(...end of run ...
- lnmp一键安装包安装失败,或者安装下载缓慢的解决办法
使用阿里云内网安装模块 阿里云外网: ftp://soft6.vpser.net/ 阿里云云内网:ftp://10.163.196.147 修改lnmp.conf 文件 目前可用的国内LNMP ful ...
- JZ2440学习笔记之链接文件lds
如果在Linux环境下用arm-linux-gcc来编译arm程序,需要编写链接文件lds: 1. 运行地址=链接地址,表示代码在SDRAM中执行的地址,如果程序中有对某部分代码执行过搬运,需要在ld ...