QwQ

LOJ #6485


题意

求题面中那个算式


题解

墙上暴利

设$ f(x)=(sx+1)^n$

假设求出了生成函数$ f$的各项系数显然可以算出答案

因为模$ 4$的缘故只要对于每个余数算出次数模4为该余数的系数和即可

求系数和强上单位根反演即可

求模4余1相当于求模4余0之后平移一位即乘上$ x^{-1}$

好像讲的非常不清楚啊...


代码

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#define p 998244353
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x=;char zf=;char ch=getchar();
while(ch!='-'&&!isdigit(ch))ch=getchar();
if(ch=='-')zf=-,ch=getchar();
while(isdigit(ch))x=x*+ch-'',ch=getchar();return x*zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int k,m,n,x,y,z,cnt,ans,a[],w[];
int ksm(int x,int y){
int ans=;
for(rt i=y;i;i>>=,x=1ll*x*x%p)if(i&)
ans=1ll*ans*x%p;
return ans;
}
int main(){
w[]=;w[]=ksm(,(p-)/);w[]=1ll*w[]*w[]%p;w[]=1ll*w[]*w[]%p;
for(rt T=read();T;T--){
n=read()%(p-);int s=read();
for(rt i=;i<;i++)a[i]=read();
int sum=;
for(rt j=;j<;j++){
const int v=ksm(1ll*s*w[j]%p+,n);
for(rt i=;i<;i++){
(sum+=1ll*a[i]*v%p*w[-i*j&]%p)%=p;
}
}
writeln(1ll*sum*ksm(,p-)%p);
}
return ;
}

LOJ #6485 LJJ 学二项式定理的更多相关文章

  1. loj #6485. LJJ 学二项式定理 (模板qwq)

    $ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...

  2. loj 6485 LJJ学二项式定理 —— 单位根反演

    题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...

  3. LOJ 6485 LJJ 学二项式定理——单位根反演

    题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...

  4. loj#6485. LJJ 学二项式定理(单位根反演)

    题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...

  5. loj #6485. LJJ 学二项式定理 单位根反演

    新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...

  6. [LOJ 6485]LJJ学二项式定理(单位根反演)

    也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...

  7. LOJ 6485 LJJ学多项式

    前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...

  8. 【LOJ#6485】LJJ 学二项式定理(单位根反演)

    [LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...

  9. LOJ6485 LJJ 学二项式定理 解题报告

    LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...

随机推荐

  1. python一直放弃到双数的day10

    今天接着来说那个新的大知识点,函数,函数中是可以传递一个数值的,这个数值简称为参数,对于参数,他可以是任意个数和任意类型(数据类型).参数的其中一种有位置传参,函数中的参数有几个,那么就要传入几个,传 ...

  2. MUI版本升级更新程序IOS和andriod

    var wgtVer=null; function plusReady(){ // 获取本地应用资源版本号 plus.runtime.getProperty(plus.runtime.appid,fu ...

  3. 本地跑 spark ui 报错

    java.lang.NoSuchMethodError: javax.servlet.http.HttpServletRequest.isAsyncStarted()Z at org.spark_pr ...

  4. 类String 常用方法

    字符串当中的常用方法之比较相关的方法 public boolean equals (object obj):将此字符串与指定的对象进行比较(只有参数是字符串并且内容相同才会返回true) public ...

  5. linux第一天

    第一天内容:1>. 命令解析器2>. Linux快捷键3>. Linux 系统目录结构4>. 用户目录5>. 文件和目录操作6>. 文件和目录的属性7>. 文 ...

  6. WebApi(五)-Swagger接口文档①简单集成

    1,通过NuGet引用Swashbuckle 2,打开项目属性-->生成,勾选XML文档文件,保存 3,找到项目App_Start文件夹下WebApiConfig查找GetXmlComments ...

  7. PHP细节,empty,is_null,isset,if()

    以下内容转载自http://wuxinjie.github.io/php-04/ 从下表可知,empty与if()完全相反,is_null与isset完全相反 isset是语句,is_null是函数, ...

  8. Maven常用命令汇总

    1.单独构建多模块项目中的某个模块 mvn clean package -pl 模块名 2.跳过测试代码直接打包 mvn install -DskipTests

  9. sql 查询 以结果集为对象左连接

  10. System.IO.Pipelines: .NET上高性能IO

    System.IO.Pipelines是一个新的库,旨在简化在.NET中执行高性能IO的过程.它是一个依赖.NET Standard的库,适用于所有.NET实现. Pipelines诞生于.NET C ...