Java基于opencv实现图像数字识别(四)—图像降噪

我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类

这个工具类呢,就一个成员变量Mat,非常的简单,这里给出代码

public class ImageUtils {
private static final int BLACK = 0;
private static final int WHITE = 255; private Mat mat; /**
* 空参构造函数
*/
public ImageUtils() { } /**
* 通过图像路径创建一个mat矩阵
*
* @param imgFilePath
* 图像路径
*/
public ImageUtils(String imgFilePath) {
mat = Imgcodecs.imread(imgFilePath);
} public void ImageUtils(Mat mat) {
this.mat = mat;
} /**
* 加载图片
*
* @param imgFilePath
*/
public void loadImg(String imgFilePath) {
mat = Imgcodecs.imread(imgFilePath);
} /**
* 获取图片高度的函数
*
* @return
*/
public int getHeight() {
return mat.rows();
} /**
* 获取图片宽度的函数
*
* @return
*/
public int getWidth() {
return mat.cols();
} /**
* 获取图片像素点的函数
*
* @param y
* @param x
* @return
*/
public int getPixel(int y, int x) {
// 我们处理的是单通道灰度图
return (int) mat.get(y, x)[0];
} /**
* 设置图片像素点的函数
*
* @param y
* @param x
* @param color
*/
public void setPixel(int y, int x, int color) {
// 我们处理的是单通道灰度图
mat.put(y, x, color);
} /**
* 保存图片的函数
*
* @param filename
* @return
*/
public boolean saveImg(String filename) {
return Imgcodecs.imwrite(filename, mat);
}
}

灰度化和二值化的代码我没有贴出来,因为代码实在有点长

我们接着上一步的成果,来开始我们的降噪

一、8邻域降噪

我感觉9宫格降噪更形象一点;即9宫格中心被异色包围,则同化

降噪效果还是蛮好的,这个方法对小噪点比较好

/**
* 8邻域降噪,又有点像9宫格降噪;即如果9宫格中心被异色包围,则同化
* @param pNum 默认值为1
*/
public void navieRemoveNoise(int pNum) {
int i, j, m, n, nValue, nCount;
int nWidth = getWidth(), nHeight = getHeight(); // 对图像的边缘进行预处理
for (i = 0; i < nWidth; ++i) {
setPixel(i, 0, WHITE);
setPixel(i, nHeight - 1, WHITE);
} for (i = 0; i < nHeight; ++i) {
setPixel(0, i, WHITE);
setPixel(nWidth - 1, i, WHITE);
} // 如果一个点的周围都是白色的,而它确是黑色的,删除它
for (j = 1; j < nHeight - 1; ++j) {
for (i = 1; i < nWidth - 1; ++i) {
nValue = getPixel(j, i);
if (nValue == 0) {
nCount = 0;
// 比较以(j ,i)为中心的9宫格,如果周围都是白色的,同化
for (m = j - 1; m <= j + 1; ++m) {
for (n = i - 1; n <= i + 1; ++n) {
if (getPixel(m, n) == 0) {
nCount++;
}
}
}
if (nCount <= pNum) {
// 周围黑色点的个数小于阀值pNum,把该点设置白色
setPixel(j, i, WHITE);
}
} else {
nCount = 0;
// 比较以(j ,i)为中心的9宫格,如果周围都是黑色的,同化
for (m = j - 1; m <= j + 1; ++m) {
for (n = i - 1; n <= i + 1; ++n) {
if (getPixel(m, n) == 0) {
nCount++;
}
}
}
if (nCount >= 7) {
// 周围黑色点的个数大于等于7,把该点设置黑色;即周围都是黑色
setPixel(j, i, BLACK);
}
}
}
} }
二、连通域降噪

我们先介绍一个函数(floodFill)

floodFill就是把一个点x的所有相邻的点都涂上x点的颜色,一直填充下去,直到这个区域内所有的点都被填充完为止

在计算的过程中,每扫描到一个黑色(灰度值为0)的点,就将与该点连通的所有点的灰度值都改为1,因此这一个连通域的点都不会再次重复计算了。下一个灰度值为0的点所有连通点的颜色都改为2,这样依次递加,直到所有的点都扫描完。接下来再次扫描所有的点,统计每一个灰度值对应的点的个数,每一个灰度值的点的个数对应该连通域的大小,并且不同连通域由于灰度值不同,因此每个点只计算一次,不会重复。这样一来就统计到了每个连通域的大小,再根据预设的阀值,如果该连通域大小小于阀值,则其就为噪点。这个算法比较适合检查大的噪点,与上个算法正好相反。

因为我找的图像关系,效果可能不咋明显;

/**
* 连通域降噪
* @param pArea 默认值为1
*/
public void contoursRemoveNoise(double pArea) {
int i, j, color = 1;
int nWidth = getWidth(), nHeight = getHeight(); for (i = 0; i < nWidth; ++i) {
for (j = 0; j < nHeight; ++j) {
if (getPixel(j, i) == BLACK) {
//用不同颜色填充连接区域中的每个黑色点
//floodFill就是把一个点x的所有相邻的点都涂上x点的颜色,一直填充下去,直到这个区域内所有的点都被填充完为止
Imgproc.floodFill(mat, new Mat(), new Point(i, j), new Scalar(color));
color++;
}
}
} //统计不同颜色点的个数
int[] ColorCount = new int[255]; for (i = 0; i < nWidth; ++i) {
for (j = 0; j < nHeight; ++j) {
if (getPixel(j, i) != 255) {
ColorCount[getPixel(j, i) - 1]++;
}
}
} //去除噪点
for (i = 0; i < nWidth; ++i) {
for (j = 0; j < nHeight; ++j) { if (ColorCount[getPixel(j, i) - 1] <= pArea) {
setPixel(j, i, WHITE);
}
}
} for (i = 0; i < nWidth; ++i) {
for (j = 0; j < nHeight; ++j) {
if (getPixel(j, i) < WHITE) {
setPixel(j, i, BLACK);
}
}
} }

注:

本文章参考了很多博客,感谢;主要是跟着一个博客来实现的https://blog.csdn.net/ysc6688/article/category/2913009(也是基于opencv来做的,只不过他是用c++实现的)感谢

Java基于opencv实现图像数字识别(四)—图像降噪的更多相关文章

  1. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  2. Java基于opencv实现图像数字识别(五)—投影法分割字符

    Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小 ...

  3. Java基于opencv实现图像数字识别(三)—灰度化和二值化

    Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字 ...

  4. Java基于opencv实现图像数字识别(一)

    Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用Buffere ...

  5. Java基于OpenCV实现走迷宫(图片+路线展示)

    Java基于OpenCV实现走迷宫(图片+路线展示) 由于疫情,待在家中,太过无聊.同学发了我张迷宫图片,让我走迷宫来缓解暴躁,于是乎就码了一个程序出来.特此记录. 原图: 这张图,由于不是非常清晰, ...

  6. 基于Opencv快速实现人脸识别(完整版)

    无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...

  7. Java基于opencv—透视变换矫正图像

    很多时候我们拍摄的照片都会产生一点畸变的,就像下面的这张图 虽然不是很明显,但还是有一点畸变的,而我们要做的就是把它变成下面的这张图 效果看起来并不是很好,主要是四个顶点找的不准确,会有一些偏差,而且 ...

  8. Java基于opencv—矫正图像

    更多的时候,我们得到的图像不可能是正的,多少都会有一定的倾斜,就比如下面的 我们要做的就是把它们变成下面这样的 我们采用的是寻找轮廓的思路,来矫正图片:只要有明显的轮廓都可以采用这种思路 具体思路: ...

  9. java基于OpenCV的人脸识别

    基于Java简单的人脸和人眼识别程序 使用这个程序之前必须先安装配置OpenCV详细教程见:https://www.cnblogs.com/prodigal-son/p/12768948.html 注 ...

随机推荐

  1. Tensorflow安装指南

    1.关闭所有安全工具!!!!!(非常重要!否则很可能安装失败) 2.下载CUDA 地址https://developer.nvidia.com/accelerated-computing-toolki ...

  2. VS2017提醒找不到MSVCR110D.dll

    我的电脑时win10我已解决,不能传文件,需要联系我

  3. s6k0:一种输入法分词关联模型演示

    实现:用kotlin.但是考虑到习惯问题,需要借助akka实现erlang的actor,以及rx.java 需求:略 预计:最快两周 保守估计时间:2019年3月左右 优先级:低 加速方法:打饭钱 赞 ...

  4. linux-centos系统下安装python3.5.4步骤

    查看当前python版本:python -V 查看Python可执行文件位置:which python [root@localhost bin]# which python/usr/bin/pytho ...

  5. 记录PHP的执行时间

    网上不少误导信息,实际上这个答案在PHP源码中的Zend文件夹下bench.php是有的 在此纠正下网络上复制粘贴造成的错误.希望后来人少踩点坑. function getmicrotime() { ...

  6. openssl 检测链路完整

    D:\openssl\bin>openssl s_client -connect www.xxxx.com:443

  7. 简易祖玛--canvas

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. Android串口屏(电阻,电容触摸),带AV输入,7寸LCD1(800*48...

    基本参数:CPU:MT6572 双核1GHzRAM:512MB存储:4GB网络:GSM,WCDMA(BAND1)WIFI:2.4G 802.11bgn蓝牙:2.0支持GPS定位 扩展参数:1.电源输入 ...

  9. VM虚拟机拍摄快照时出错或者克隆失败解决办法

    在换了固态硬盘后,下载好VM,装虚拟机,结果克隆虚拟机和拍摄快照时出问题了. 拍摄快照时出错或者隆失败出现参数错误如图: 所提供的参数中有一个无效参数 解决办法 出现这个问题一般是在机械硬盘的电脑上面 ...

  10. Exception、Thorow、Throws、TryCatch

    一.异常 概述: 异常指的是不正常,指的是程序中出现了某种问题 java中,所有问题都可以使用一个类来表示,这个类叫做Throwable Throwable: Throwawble是java中所有异常 ...