Description

有一种图形叫做五角形圈。一个五角形圈的中心有1个由n个顶点和n条边组成的圈。

在中心的这个n边圈的每一条边同一时候也是某一个五角形的一条边,一共同拥有n个不同的五角形。这些五角形仅仅在五角形圈的中心的圈上有公共的顶点。如图0所看到的是一个4-五角形圈。

如今给定一个n五角形圈。你的任务就是求出n五角形圈的不同生成树的数目。还记得什么是图的生成树吗?一个图的生成树是保留原图的全部顶点以及顶点的数目减去一这么多条边,从而生成的一棵树。

注意:在给定的n五角形圈中全部顶点均视为不同的顶点。

Input

输入包括多组測试数据。

第一行包括一个正整数T,表示測试数据数目。每组測试数据包括一个整数n( 2<=N<=100),代表你须要求解的五角形圈中心的边数。

Output

对每一组測试数据,输出一行包括一个整数x。表示n五角形圈的生成树数目模2007之后的结果。

Sample Input

1

2

Sample Output

40

HINT

Source

直接Matrix-tree定理就好了

也能够用组合数学/DP来做

关于组合数学能够看PoPoQQQ的blog

果然还是矩阵树好想…

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MAXN 1010
#define P 2007
using namespace std;
int A[MAXN][MAXN],D[MAXN][MAXN],C[MAXN][MAXN];
int n,top;
int T;
int calc(int size)
{
for (int i=1;i<size;i++)
for (int j=1;j<size;j++)
C[i][j]=(C[i][j]+P)%P;
int ret=1;
for (int i=1;i<size;i++)
{
for (int j=i+1;j<size;j++)
{
int a=C[i][i],b=C[j][i];
while (b)
{
int temp=a/b;a%=b;swap(a,b);
for (int k=i;k<size;k++) C[i][k]=(C[i][k]-temp*C[j][k])%P;
for (int k=i;k<size;k++) swap(C[i][k],C[j][k]);
ret=-ret;
}
}
if (!C[i][i]) return 0;
ret=ret*C[i][i]%P;
}
return (ret+P)%P;
}
int main()
{
scanf("%d",&T);
while (T--)
{
memset(A,0,sizeof(A));memset(D,0,sizeof(D));
scanf("%d",&n);
top=n;
for (int i=1;i<=n;i++)
{
int u=i,v=i+1>n?1:i+1;
A[u][top+1]++;A[top+1][u]++;D[u][u]++;D[top+1][top+1]++;
A[top+1][top+2]++;A[top+2][top+1]++;D[top+1][top+1]++;D[top+2][top+2]++;
A[top+2][top+3]++;A[top+3][top+2]++;D[top+2][top+2]++;D[top+3][top+3]++;
A[top+3][v]++;A[v][top+3]++;D[top+3][top+3]++;D[v][v]++;
top+=3;
A[u][v]++;A[v][u]++;D[u][u]++;D[v][v]++;
}
for (int i=1;i<=top;i++)
for (int j=1;j<=top;j++)
C[i][j]=D[i][j]-A[i][j];
cout<<calc(top)<<endl;
}
}

【中山市选2010】【BZOJ2467】生成树的更多相关文章

  1. [bzoj2467][中山市选2010]生成树_快速幂

    生成树 bzoj-2467 中山市选2010 题目大意:题目链接 注释:略. 想法:首先,考虑生成树的性质.每两个点之间有且只有一条路径.我们将每个五边形的5条边分为外面的4条边和内部的一条边,在此简 ...

  2. BZOJ 2467: [中山市选2010]生成树 [组合计数]

    2467: [中山市选2010]生成树 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 638  Solved: 453[Submit][Status][ ...

  3. BZOJ_2467_[中山市选2010]生成树_数学

    BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...

  4. bzoj 2468: [中山市选2010]三核苷酸

    2468: [中山市选2010]三核苷酸 Description 三核苷酸是组成DNA序列的基本片段.具体来说,核苷酸一共有4种,分别用’A’,’G’,’C’,’T’来表示.而三核苷酸就是由3个核苷酸 ...

  5. bzoj2467: [中山市选2010]生成树

    Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角 ...

  6. [BZOJ2467] [中山市选2010] 生成树 (排列组合)

    Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角 ...

  7. 【bzoj2467】[中山市选2010]生成树 矩阵树定理

    题目描述 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈 ...

  8. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  9. BZOJ 2467: [中山市选2010]生成树

    有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...

随机推荐

  1. 工具-Telerik trial安装图解

  2. 工具-NuGet

    1.添加下载后,会将文件添加到当前项目的引用和bin目录中 ORM是一种插件/组件,将对集合对象的操作映射为对关系型数据库的操作,这个映射是相互的 来自为知笔记(Wiz)

  3. shell脚本监测文件变化

    1. 我使用过的Linux命令之du - 查看文件的磁盘空间占用情况 用途说明 du命令是用来查看磁盘空间占用情况的,在Linux系统维护时常会用到,并且通常与df命令搭配使用.首先使用df看一下各个 ...

  4. [Design]Adobe CS6 2%错误问题

    错误描述:FATAL: Payload '{3F023875-4A52-4605-9DB6-A88D4A813E8D} Camera Profiles Installer 6.0.98.0' info ...

  5. SVG中一些较为具体的文档

    绘制线头尾标记 http://tutorials.jenkov.com/svg/marker-element.html 微软关于svg的文档 http://msdn.microsoft.com/zh- ...

  6. Methods Collection of Enumerating Com Port in Windows, by C

    According to this stack overflow thread, PJ Naughter has implemented 9 methods to emunerate com port ...

  7. 客户端通过wcf来启动或者停止服务器上的windows service

    1.设置服务器上的windows service的security,下面的命令只能用cmd.exe来运行(以管理员模式) sc sdset "LISA_43_Dev_Batch" ...

  8. dns tunnel工具地址

  9. zzulioj--1613--少活一年?(稍微有点坑,水!)

    1613: 少活一年? Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 344  Solved: 70 SubmitStatusWeb Board De ...

  10. Request.QueryString["id"] 、Request.Params["id"] 的强大

    <form> <input type="text" name="id" value="值"> </form&g ...