Solving the Problem of Overfitting
The Problem of Overfitting
Cost Function
Regularized Linear Regression
Note: [8:43 - It is said that X is non-invertible if m ≤ n. The correct statement should be that X is non-invertible if m < n, and may be non-invertible if m = n.
We can apply regularization to both linear regression and logistic regression. We will approach linear regression first.
Regularized Logistic Regression
We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:
Solving the Problem of Overfitting的更多相关文章
- machine learning(13) -- solving the problem of overfitting:regularization
solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...
- 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- The first step in solving any problem is recognizing there is one.
The first step in solving any problem is recognizing there is one.解决问题的第一步是要承认确实存在问题.
- 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...
- 1763 An Essay towards solving a Problem in the Doctrine of Chances
https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
- Ng第七课:正则化与过拟合问题 Regularization/The Problem of Overfitting
7.1 过拟合的问题 7.2 代价函数 7.3 正则化线性回归 7.4 正则化的逻辑回归模型 7.1 过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练 ...
- Machine Learning - 第3周(Logistic Regression、Regularization)
Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...
- 《Machine Learning》系列学习笔记之第三周
第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0. ...
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
随机推荐
- colrm---删除文件制定列
- 洛谷——P2957 [USACO09OCT]谷仓里的回声Barn Echoes
https://www.luogu.org/problem/show?pid=2957 题目描述 The cows enjoy mooing at the barn because their moo ...
- Android 给图片加边框
图片处理时,有时需要为图片加一些边框,下面介绍一种为图片添加简单边框的方法. 基本思路是:将边框图片裁剪成八张小图片(图片大小最好一致,不然后面处理会很麻烦),分别对应左上角,左边,左下角,下边,右下 ...
- cluster discovery概述及FaultDetection分析
elasticsearch cluster实现了自己发现机制zen.Discovery功能主要包括以下几部分内容:master选举,master错误探测,集群中其它节点探测,单播多播ping.本篇会首 ...
- JS学习笔记 - Try / Catch / Finally
<body> <p>请输入 5 和 10 之间的一个数:</p> <input id="demo" type="text&quo ...
- uva 1456(dp)
题意:有n个数字u1,u2,u3-un,每一个数字出现的概率pi = ui/(u1 + u2 + - + un),分成w组.计算期望值. 第一组例子的五个数字例如以下 30 5 10 30 25 分成 ...
- Linux系列-安装经常使用软件
安装JDK: 理论篇: 一.下载JDK 二.安装 ①复制到/usr/java/路径下 [plain] view plaincopy #mkdir /usr/java/ #cp jdk-7u25-lin ...
- Xamarin开发手机聊天程序
使用Xamarin开发手机聊天程序 -- 基础篇(大量图文讲解 step by step,附源码下载) 如果是.NET开发人员,想学习手机应用开发(Android和iOS),Xamarin 无疑是 ...
- Solr 写数据流程
Solr 写数据流程: 1.源字符串首先经过分词器处理,包括:拆分词以及去除stopword. 2.然后经过语言处理,包括大小写转换以及单词转换. 3.将源数据中需要的信息加入到Document中的各 ...
- sql server备份与还原 sql语句
USE master DECLARE tb CURSOR LOCAL FOR SELECT 'Kill '+ CAST(Spid AS VARCHAR) FROM master.dbo.sysproc ...