The Problem of Overfitting

Cost Function

Regularized Linear Regression

Note: [8:43 - It is said that X is non-invertible if m ≤ n. The correct statement should be that X is non-invertible if m < n, and may be non-invertible if m = n.

We can apply regularization to both linear regression and logistic regression. We will approach linear regression first.

Regularized Logistic Regression

We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:

Solving the Problem of Overfitting的更多相关文章

  1. machine learning(13) -- solving the problem of overfitting:regularization

    solving the problem of overfitting:regularization 发生的在linear regression上面的overfitting问题 发生在logistic ...

  2. 机器学习(四)正则化与过拟合问题 Regularization / The Problem of Overfitting

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  3. The first step in solving any problem is recognizing there is one.

    The first step in solving any problem is recognizing there is one.解决问题的第一步是要承认确实存在问题.

  4. 吴恩达机器学习笔记19-过拟合的问题(The Problem of Overfitting)

    到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致 ...

  5. 1763 An Essay towards solving a Problem in the Doctrine of Chances

    https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances

  6. Ng第七课:正则化与过拟合问题 Regularization/The Problem of Overfitting

    7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设预测可能能够非常好地适应训练 ...

  7. Machine Learning - 第3周(Logistic Regression、Regularization)

    Logistic regression is a method for classifying data into discrete outcomes. For example, we might u ...

  8. 《Machine Learning》系列学习笔记之第三周

    第三周 第一部分 Classification and Representation Classification 为了尝试分类,一种方法是使用线性回归,并将大于0.5的所有预测映射为1,所有小于0. ...

  9. Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)

    Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...

随机推荐

  1. colrm---删除文件制定列

  2. 洛谷——P2957 [USACO09OCT]谷仓里的回声Barn Echoes

    https://www.luogu.org/problem/show?pid=2957 题目描述 The cows enjoy mooing at the barn because their moo ...

  3. Android 给图片加边框

    图片处理时,有时需要为图片加一些边框,下面介绍一种为图片添加简单边框的方法. 基本思路是:将边框图片裁剪成八张小图片(图片大小最好一致,不然后面处理会很麻烦),分别对应左上角,左边,左下角,下边,右下 ...

  4. cluster discovery概述及FaultDetection分析

    elasticsearch cluster实现了自己发现机制zen.Discovery功能主要包括以下几部分内容:master选举,master错误探测,集群中其它节点探测,单播多播ping.本篇会首 ...

  5. JS学习笔记 - Try / Catch / Finally

    <body> <p>请输入 5 和 10 之间的一个数:</p> <input id="demo" type="text&quo ...

  6. uva 1456(dp)

    题意:有n个数字u1,u2,u3-un,每一个数字出现的概率pi = ui/(u1 + u2 + - + un),分成w组.计算期望值. 第一组例子的五个数字例如以下 30 5 10 30 25 分成 ...

  7. Linux系列-安装经常使用软件

    安装JDK: 理论篇: 一.下载JDK 二.安装 ①复制到/usr/java/路径下 [plain] view plaincopy #mkdir /usr/java/ #cp jdk-7u25-lin ...

  8. Xamarin开发手机聊天程序

    使用Xamarin开发手机聊天程序 -- 基础篇(大量图文讲解 step by step,附源码下载)   如果是.NET开发人员,想学习手机应用开发(Android和iOS),Xamarin 无疑是 ...

  9. Solr 写数据流程

    Solr 写数据流程: 1.源字符串首先经过分词器处理,包括:拆分词以及去除stopword. 2.然后经过语言处理,包括大小写转换以及单词转换. 3.将源数据中需要的信息加入到Document中的各 ...

  10. sql server备份与还原 sql语句

    USE master DECLARE tb CURSOR LOCAL FOR SELECT 'Kill '+ CAST(Spid AS VARCHAR) FROM master.dbo.sysproc ...