UVA 10006(素数打表+快速幂)
当今计算机科学的一个重要的领域就是密码学。有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义。
(2 < n < 65000)
。n = 0
表示输入结束并不需要处理
Output
对每组输入,输出它是不是卡迈克尔数,参考样例。
Sample Input
Sample Output
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cstdlib>
#include<string>
#define eps 0.000000001
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int N=;
int prime[N];
void _prime(){
for(int i=;i*i<=N;i++){
if(prime[i]==){
for(int j=i*i;j<=N;j=j+i){
prime[j]=;
}
}
}
}
ll kuaishumi(ll a,ll b){
ll ans=;
ll mod=b;
while(b){
if(b&){
ans=ans*a%mod;
}
a=a*a%mod;
b=b/;
}
return ans;
}
int main(){
int a,n;
_prime();
while(scanf("%d",&a)!=EOF){
if(a==)break;
if(prime[a]==){
printf("%d is normal.\n",a);
// cout<<1<<endl;
continue;
}
int flag=;
for(int i=;i<a;i++){
if(kuaishumi(i,a)!=i){
flag=;
break;
} }
if(flag==)
printf("The number %d is a Carmichael number.\n",a);
else
printf("%d is normal.\n",a); }
}
UVA 10006(素数打表+快速幂)的更多相关文章
- UVA 11149 Power of Matrix 快速幂
题目链接: http://acm.hust.edu.cn/vjudge/contest/122094#problem/G Power of Matrix Time Limit:3000MSMemory ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- UVA - 10229 Modular Fibonacci 矩阵快速幂
Modular Fibonacci The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 3 ...
- UVA 11609 - Teams 组合、快速幂取模
看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...
- UVa 10655 Contemplation! Algebra 矩阵快速幂
题意: 给出\(p=a+b\)和\(q=ab\),求\(a^n+b^n\). 分析: 这种题目关键还是在于构造矩阵: \(\begin{bmatrix} 0 & 1 \\ -(a+b) &am ...
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- 【UVA - 10006 】Carmichael Numbers (快速幂+素数筛法)
-->Carmichael Numbers Descriptions: 题目很长,基本没用,大致题意如下 给定一个数n,n是合数且对于任意的1 < a < n都有a的n次方模n等于 ...
- Uva 10006 Carmichael Numbers (快速幂)
题意:给你一个数,让你判断是否是非素数,同时a^n%n==a (其中 a 的范围为 2~n-1) 思路:先判断是不是非素数,然后利用快速幂对每个a进行判断 代码: #include <iostr ...
随机推荐
- ArcGIS Android工程迁移到其他电脑不能打开的问题
问题描述:当我把已经做好的ArcGIS Android工程想在其他电脑运行时,总是会提示报错.而报错的地方,正是出现在下面这条语句上. compile 'com.esri.arcgisruntime: ...
- CxImage实现9PNG
CxImage* ScaleImageBy9PNG(CxImage *pRawImage, int nDstWidth,int nDstHeight) { if(NULL == pRawImage) ...
- Beta Edition [ Group 1 ]
DeltaFish Beta Edition 一.七月开发过程 小组会议 DeltaFish 校园物资共享平台 第八次小组会议 GITHUB https://github.com/DeltaFishS ...
- 如何快速获取yun2win app key?
注册yun2win开发者账号 1.在注册页面输入您的邮箱,点击下方发送,yun2win将会发送一封验证邮件到您的邮箱: 2.如果没有收到邮件请查看垃圾箱或者点击重新发送: 3.打开邮箱查看验证邮件,点 ...
- 一款批量linux管理工具batchshell
BatchShell是什么? BatchShell是一款基于SSH2的批量文件传输及命令执行工具,它可以同时传输文件到多台远程服务器以及同时对多台远程服务器执行命令.BatchShell基于原生的sh ...
- java aop面向切面编程
最近一直在学java的spring boot,一直没有弄明白aop面向切面编程是什么意思.看到一篇文章写得很清楚,终于弄明白了,原来跟python的装饰器一样的效果.http://www.cnblog ...
- 所有对象的父类(java.lang.Object)
一.介绍 Object类是类层次结构的根源,每一个类都存在一个父类为Object类.所有的对象,包括数组,都实现了 Object 类的方法. 二.对象初始化 这里使用了静态代码块进行Object类的初 ...
- 48.cartinality的基本用法
主要知识点 cartinality的用法 es去重用的是cartinality metric算法,对每个bucket中的指定的field进行去重,然后获取去重后的count,类似于count( ...
- python爬虫16 | 你,快去试试用多进程的方式重新去爬取豆瓣上的电影
我们在之前的文章谈到了高效爬虫 在 python 中 多线程下的 GIL 锁会让多线程显得有点鸡肋 特别是在 CPU 密集型的代码下 多线程被 GIL 锁搞得效率不高 特别是对于多核的 CPU 来说 ...
- Flask - Flask的蓝图(BluePrint)
目录 Flask - Flask的蓝图(BluePrint) 一. 初始Flask蓝图 进阶Flask蓝图 使用蓝图做一个增删改查 1.使用蓝图进行web应用搭建: 2.使用Flask蓝图,查看学生信 ...