Jzzhu and Numbers
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Jzzhu have n non-negative integers a1, a2, ..., an. We will call a sequence of indexes i1, i2, ..., ik (1 ≤ i1 < i2 < ... < ik ≤ n) a group of size k.

Jzzhu wonders, how many groups exists such that ai1 & ai2 & ... & aik = 0 (1 ≤ k ≤ n)? Help him and print this number modulo1000000007 (109 + 7). Operation x & y denotes bitwise AND operation of two numbers.

Input

The first line contains a single integer n (1 ≤ n ≤ 106). The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 106).

Output

Output a single integer representing the number of required groups modulo 1000000007 (109 + 7).

Examples
input
3
2 3 3
output
0
input
4
0 1 2 3
output
10
input
6
5 2 0 5 2 1
output
53
分析:暴力肯定不行了,考虑容斥;
   答案为ans=Σ(-1)f(x)*pow(2,num[x]),f(x)代表x中二进制1的个数,num[x]代表a[k]&x=x的个数;
   求num[x]=Σcnt[k](a[k]&x=x),即为高维前缀和,与spoj tle类似;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e6+;
const int N=2e2+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,num[<<];
ll dp[<<],p[maxn];
int main()
{
int i,j;
p[]=;
rep(i,,maxn-)p[i]=p[i-]*%mod;
scanf("%d",&n);
rep(i,,n)scanf("%d",&j),dp[j]++;
rep(i,,)
{
rep(j,,(<<)-)
{
if((~j)&(<<i))(dp[j]+=dp[j^(<<i)])%=mod;
if(j&(<<i))num[j]++;
}
}
ll ret=;
rep(i,,(<<)-)
{
if(num[i]&)ret=(ret-p[dp[i]]+mod)%mod;
else ret=(ret+p[dp[i]])%mod;
}
printf("%lld\n",ret);
return ;
}

Jzzhu and Numbers的更多相关文章

  1. Codeforces Round #257 (Div. 1) D - Jzzhu and Numbers 容斥原理 + SOS dp

    D - Jzzhu and Numbers 这个容斥没想出来... 我好菜啊.. f[ S ] 表示若干个数 & 的值 & S == S得 方案数, 然后用这个去容斥. 求f[ S ] ...

  2. Codeforces 449D Jzzhu and Numbers

    http://codeforces.com/problemset/problem/449/D 题意:给n个数,求and起来最后为0的集合方案数有多少 思路:考虑容斥,ans=(-1)^k*num(k) ...

  3. D. Jzzhu and Numbers

    这就是这个题目的意思,真的感觉这个思想是太神奇了,我这种菜逼现在绝壁想不到这样的证明的过程的,还有就是这个题的推道过程,以下思路纯属借鉴卿学姐的,还是自己太菜了,,,, 讲道理这种问题我真的想不到用容 ...

  4. Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)

    题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...

  5. Jzzhu and Numbers CodeForces - 449D (高维前缀和,容斥)

    大意: 给定集合a, 求a的按位与和等于0的非空子集数. 首先由容斥可以得到 $ans = \sum \limits_{0\le x <2^{20}} (-1)^{\alpha} f_x$, 其 ...

  6. 【CF449D】Jzzhu and Numbers

    题目 提供一个非容斥做法--\(FWT\) 我们发现我们要求的东西就是一个背包,只不过是在\(and\)意义下的 自然有 \[dp_{i,j}=\sum_{k\&a_i=j}dp_{i-1,k ...

  7. cf449D. Jzzhu and Numbers(容斥原理 高维前缀和)

    题意 题目链接 给出\(n\)个数,问任意选几个数,它们\(\&\)起来等于\(0\)的方案数 Sol 正解居然是容斥原理Orz,然而本蒟蒻完全想不到.. 考虑每一种方案 答案=任意一种方案 ...

  8. Codeforces 449D Jzzhu and Numbers(高维前缀和)

    [题目链接] http://codeforces.com/problemset/problem/449/D [题目大意] 给出一些数字,问其选出一些数字作or为0的方案数有多少 [题解] 题目等价于给 ...

  9. CF449D Jzzhu and Numbers

    题解 刚刚学习了高维前缀和 这道题就肥肠简单了 高维前缀和其实原理肥肠简单 就是每次只考虑一维,然后只做这一维的前缀和 最后求出的就是总前缀和了 那么对于这道题 也就很简单了 发现选择的所有数每一位都 ...

随机推荐

  1. openstack instance bootmgr is missing 问题 修复

  2. Linux文件属性相关补充及软硬连接

    第1章 文件属性相关 1.1 文件的属性 1.1.1 扩展名 windows  通过扩展名区分不同的类型的文件 linux 扩展名是给人类看的 方便我们区分不同类型文件 .conf      配置文件 ...

  3. 2.android

    ImageButton action_btn = (ImageButton) findViewById(R.id.action_btn);action_btn.setOnClickListener(n ...

  4. js和php中几种生成验证码的方式

    之前做过取随机数和生成验证码的练习,都是通过取随机数作为数组下标,然后从数组中取值的方式(js): /*验证码*/ function sj_yzm(){ //存一个包括数字和字母的数组 var zon ...

  5. canvas做的时钟,学习下

    canvas标签只是图形容器,您必须使用脚本来绘制图形. getContext() 方法可返回一个对象,该对象提供了用于在画布上绘图的方法和属性.——获取上下文对象. getContext(" ...

  6. [Swift通天遁地]七、数据与安全-(12)使用Instruments Leaks工具检测内存泄露

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  7. Python/Django 下载Excel2007

    一.前提 上一篇,我写了下载Excel2003的博文,这里写下载Excel2007的博文的原因有三: 第一.Excel2003基本已经淘汰了 第二.Excel2003下载文件太大,不利于网络传输 第三 ...

  8. ACM_他和她(最大生成树+最短路径)

    他和她 Time Limit: 2000/1000ms (Java/Others) Problem Description: 大二上学期刚过完,平时成绩不错的小V参加了一个小型编程比赛,遇到一道题,虽 ...

  9. ACM_小Z的A+B

    小Z的A+B Time Limit: 2000/1000ms (Java/Others) Problem Description: 小Z最喜欢A+B了,没事就研究研究,比如什么大整数A+B(就是100 ...

  10. HTTP协议头部字段释义

    1. Accept:告诉WEB服务器自己接受什么介质类型,*/* 表示任何类型,type/* 表示该类型下的所有子类型,type/sub-type. 2. Accept-Charset: 浏览器申明自 ...