Evacuation Plan

Time Limit: 1000ms
Memory Limit: 65536KB

This problem will be judged on PKU. Original ID: 2175
64-bit integer IO format: %lld      Java class name: Main

 
The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there's almost no excess capacity in The City's fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

 

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

 

Output

If The City Council's plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council's one.

 

Sample Input

3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2

Sample Output

SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1

Source

 
解题:消圈法,判费用流是否最优。建立残量网络,从汇点进行spfa,判断后向弧是否形成负权环,是,则有更优解,否则无更有解。如果更优解,只需要,后向弧减1,前向弧加1,可获得一个更有解,虽然可能不是最优解。
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
struct arc{
int to,flow,cost,next;
arc(int x = ,int y = ,int z = ,int nxt = -){
to = x;
flow = y;
cost = z;
next = nxt;
}
};
arc e[maxn*maxn];
int head[maxn],d[maxn],x[maxn],y[maxn],c[maxn];
int tot,S,T,n,m,sf[maxn],bf[maxn],p[maxn],cnt[maxn];
bool in[maxn];
void add(int u,int v,int f1,int f2,int co){
e[tot] = arc(v,f1,co,head[u]);
head[u] = tot++;
e[tot] = arc(u,f2,-co,head[v]);
head[v] = tot++;
}
int getDis(int i,int j){
return abs(x[i] - x[j]) + abs(y[i] - y[j]) + ;
}
int spfa(){
for(int i = S; i <= T; ++i){
d[i] = INF;
cnt[i] = ;
in[i] = false;
p[i] = -;
}
queue<int>q;
d[T] = ;
q.push(T);
while(!q.empty()){
int u = q.front();
q.pop();
in[u] = false;
for(int i = head[u]; ~i; i = e[i].next){
if(e[i].flow && d[e[i].to] > d[u] + e[i].cost){
d[e[i].to] = d[u] + e[i].cost;
p[e[i].to] = i;
if(!in[e[i].to]){
in[e[i].to] = true;
if(++cnt[e[i].to] > T) return e[i].to;
q.push(e[i].to);
}
}
}
}
return -;
}
int main(){
while(~scanf("%d %d",&n,&m)){
memset(head,-,sizeof(head));
memset(sf,,sizeof(sf));
memset(bf,,sizeof(bf));
T = n + m + ;
S = tot = ;
for(int i = ; i <= n + m; ++i)
scanf("%d %d %d",x+i,y+i,c+i);
for(int i = ; i <= n; ++i){
for(int j = ; j <= m; ++j){
int tmp = ;
scanf("%d",&tmp);
add(i,j+n,INF - tmp,tmp,getDis(i,j+n));
sf[j] += tmp;
bf[i] += tmp;
}
}
for(int i = ; i <= n; ++i) add(S,i,c[i] - bf[i],bf[i],);
for(int i = ; i <= m; ++i) add(i+n,T,c[i+n] - sf[i],sf[i],);
int u,v,o = spfa();
if(o == -) puts("OPTIMAL");
else{
memset(in,false,sizeof(in));
while(!in[o]){
in[o] = true;
o = e[p[o]^].to;
}
v = u = o;
do{
u = e[p[v]^].to;
e[p[v]].flow--;
e[p[v]^].flow++;
v = u; }while(u != o);
puts("SUBOPTIMAL");
for(int i = ; i <= n; ++i){
for(int j = ; j <= m; ++j){
printf("%d%c",e[(i-)*m* + *(j-)+].flow,j == m?'\n':' ');
}
}
}
}
return ;
}

POJ 2175 Evacuation Plan的更多相关文章

  1. POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)

    http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. POJ.2175.Evacuation Plan(消圈)

    POJ \(Description\) \(n\)个建筑物,每个建筑物里有\(a_i\)个人:\(m\)个避难所,每个避难所可以容纳\(b_i\)个人. 给出每个建筑物及避难所的坐标,任意两点间的距离 ...

  3. POJ 2175 Evacuation Plan 费用流 负圈定理

    题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...

  4. poj 2175 Evacuation Plan 最小费用流判定,消圈算法

    题目链接 题意:一个城市有n座行政楼和m座避难所,现发生核战,要求将避难所中的人员全部安置到避难所中,每个人转移的费用为两座楼之间的曼哈顿距离+1,题目给了一种方案,问是否为最优方案,即是否全部的人员 ...

  5. POJ - 2175 Evacuation Plan (最小费用流消圈)

    题意:有N栋楼,每栋楼有\(val_i\)个人要避难,现在有M个避难所,每个避难所的容量为\(cap_i\),每个人从楼i到避难所j的话费是两者的曼哈顿距离.现在给出解决方案,问这个解决方案是否是花费 ...

  6. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  7. POJ2175:Evacuation Plan(消负圈)

    Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special J ...

  8. POJ2175 Evacuation Plan

    Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4617   Accepted: 1218   ...

  9. HDU 3757 Evacuation Plan DP

    跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...

随机推荐

  1. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 1 课程介绍

    课程大纲:http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html 课程定位: 课程交叉: what is (computer) ...

  2. 新手须知 QT类大全

    QT类大全,在行内容中罗列出来了,希望大家多看看,如果是API就更好了,但可惜不是.这些是一些大类,请多做参考. QApplication 应用程序类 QLabel 标签类 QPushButton 按 ...

  3. python_传递任意数量的实参

    '''def name(*args): #python创建一个空元组,将收到的所有值都封装在这个元组中 """打印所有姓名""" for i ...

  4. 基于bootstrap的分页组件-Bootstrap Paginator

    效果

  5. 微信支付报ip错,怀疑是因为不能正确获取$_Server[addr])ip导致的

    报如下错误,应该是本地测试环境不能正确获取客户ip导致的错误 果然 放到服务器上在测试就好了

  6. 【HDU 6299】Balanced Sequence

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 我们贪心地把每一个括号序列能匹配都按照栈的规则都匹配出来. (直接递增匹配对数*2就可以了 最后栈里面就只剩下类似))))((((( ...

  7. Java 获取环境变量

    Java 获取环境变量Java 获取环境变量的方式很简单: System.getEnv()  得到所有的环境变量System.getEnv(key) 得到某个环境变量的值 由于某些需要,可能要下载某些 ...

  8. 怎样获取ios设备的唯一标识

    非常多地方都会须要用到唯一标志. 比方: 1. 我们相用一个设备的唯一标志当作用户id,特别是网络游戏,这样就能够省去注冊的麻烦. 2. 想把app相关的文件加密,密钥哪里来的?有些人可能会说hard ...

  9. Python中常见的文件对象内建函数

    文件对象内建方法列表 文件对象的方法 操作 file.close() 关闭文件 file.fileno() 返回文件的描写叙述符(file descriptor.FD,整数值) file.flush( ...

  10. Unity3d修炼之路:用Mesh绘制一个Cube

    #pragma strict function Awake(){ var pMeshFilter : MeshFilter = gameObject.AddComponent(typeof(MeshF ...