【5001】n皇后问题
Time Limit: 10 second
Memory Limit: 2 MB
在n*n的棋盘上放置n个皇后(国际象棋中的皇后,n≤10)而彼此不受攻击(即在棋盘的任一行,任一列和任一对角线上不能放置两个皇后),编程求出所有的摆放方法
Input
输入文件仅一行,输入n(0≤n≤10)。
Output
每行输出一种方案,每种方案按顺序输出皇后所在的列号,各个数之间用空格隔开,若无方案,则输出“No solution!”。(最后用换行结束)
Sample Input
4
Sample Output
2 4 1 3
3 1 4 2
【题解】
这题的主要问题在于,要如何判断当前搜素到的位置能不能放下棋子。
这里用了3个数组来解决问题。
zxbo,fxbo,bo;
zxbo数组和fxbo数组代表①类。
bo数组代表②类。
用b[i][j],a[i][j]两个二维数组存储每个位置所代表的类。
其中b[i][j] = i - j;a[i][j] = i + j;
如n = 5 得到的b数组和a数组如下。
可以看到b数组从左上到右下的对角线,数字是一样的。
而a数组 从右上到左下的对角线,数字也是一样的。
我们用fxbo,zxbo分别表示负数和正数的b数组中的数字是否出现过。
用bo数组表示a数组中的数字是否出现过。(a数组不会出现负数)
然后每次放棋子的时候我们只要看看a[i][j]和b[i][j]的值 m,n。然后看看bo[m] 和 fxbo[n]或zxbo[n] 是否为false,如果为false则表示可以放,否则不能放。
放完后把上面的bo,fxbo或 zxbo数组置为true;
一行一行的搜索就好,同时还应该加入一个lbo数组,用来判断列的重复情况。
【代码】
#include <cstdio>
int a[12][12],b[12][12],n,ans[20],nn = 0; //ans 数组用于记录答案,nn整形用于判断答案数,以此来判断是否输出无解信息。
bool zxbo[25],fxbo[25],lbo[12],bo[25];
void init()
{
scanf("%d",&n);
for (int i = 1;i <= n;i++)
for (int j = 1; j <= n;j++)
a[i][j] = i + j,b[i][j] = i - j; //初始化a,b数组
for (int i = 1;i <= n;i++) //初始化各个判重数组
lbo[i] = false;
for (int i = 0;i <= 22;i++)
zxbo[i] = false,fxbo[i] = false,bo[i] = false;
}
void output_ans() //放完所有的棋子,然后输出答案。
{
for (int j = 1;j <= n-1;j++)
printf("%d ",ans[j]);
printf("%d\n",ans[n]);
}
void sear_ch(int x ) //搜索第x行
{
if (x == n+1) //如果已经搜完了,就输出答案。
{
output_ans();
nn++;
return;
}
for (int i = 1; i <= n;i++) //尝试每一列
{
if (lbo[i]) continue; //如果已经搜索过这一列,就搜下一列。
int tt = a[x][i],t = b[x][i]; //获取这个位置的“两个类的值”
bool flag = true; //用来判断两个对角线是否都符合要求。
flag = bo[tt];
if (flag) continue;
if ( t > 0)
flag = zxbo[t];
else
flag = fxbo[-t];
if (flag) continue;
bo[tt] = true; //tt = i + j 是一定大于0的
if (t > 0) //而t = i - j 是可能小于0 的
zxbo[t] = true;
else
fxbo[-t] = true;
lbo[i] = true; //标记这一列被占领
ans[x] = i; //记录答案
sear_ch(x+1); //寻找下一行.
lbo[i] = false;
bo[tt] = false;
if (t > 0)
zxbo[t] = false;
else
fxbo[-t] = false;
}
}
void s_p()
{
if (nn == 0)
printf("No solution!\n");
}
int main()
{
init();
sear_ch(1);
s_p();
return 0;
}
【5001】n皇后问题的更多相关文章
- 递归实现n(经典的8皇后问题)皇后的问题
问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- [LeetCode] N-Queens II N皇后问题之二
Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...
- [LeetCode] N-Queens N皇后问题
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- N皇后问题—初级回溯
N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...
- 数据结构0103汉诺塔&八皇后
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...
- N皇后问题
题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...
- LeetCode:N-Queens I II(n皇后问题)
N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no tw ...
- 八皇后问题_Qt_界面程序实现
//核心代码如下 //Queen--放置皇后 #include "queue.h" queue::queue() { *; ; this->board = new bool[ ...
随机推荐
- Kinect 开发 —— 用户交互设计的若干思考
Metro 风格 windows 8 Kinect Hub 手势原型设计 悬停选择 翻页控制 关节点重叠的处理方法 将箭靶设置在画面的边缘,这样玩家持弓的角度与屏幕保持一个大约45度的锐角,这 ...
- JavaScript翻译成Java
这两天公司有一个需求,将一段加密的JavaScript代码转换为JAVA版. JavaScript中的某一段代码: 前期查看了整个JavaScript代码,发现代码中,方法里面嵌套方法,各种不合规的变 ...
- Hibernate5配置与使用具体解释
转载请注明出处:http://blog.csdn.net/tyhj_sf/article/details/51851163 引言 Hibernate是一个轻量级的持久层开源框架,它是连接java应用程 ...
- battery-获取手机电量信息
我们如果想要获得手机的电池电量信息,可以借助广播来实现.因为当手机电池电量发生变化的时候,系统会发送一个广播.具体代码如下 //注册 intentFilter.addAction(Intent.ACT ...
- python处理文件
打开文件: open是内建函数,一个方法 open("test.txt","r",buffering=1) test.txt 表示被打开的文件名,如果不 ...
- PHP盛宴——经常使用函数集锦
近期写了蛮多PHP,也接触到挺多经常使用的函数,大多都记了笔记,发个博客出来.共同学习.事实上感觉学习一门语言,语法逻辑是软素养.而对语言的熟悉程度仅仅能随着使用时间的增长而慢慢增长,当对一门语言的函 ...
- ToggleButton控件
ToggleButton 两种状态 ·状态button -继承自CompoundButton ·主要属性:-Android:textOn -Android:textOff ·主要方法: ...
- xcode6.3 模版位置
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Templ ...
- ImageButton-设置background跟src
xml中添加ImageButton的background跟src <ImageButton android:id="@+id/tv3" android:layout_widt ...
- 前端面试题(HTML/CSS)
(前端面试题大全,持续更新) 常用的块级元素和行内元素有哪些?说说他们的特点? 浮动产生的原因?清除浮动? 说说一下盒模型 float和position一起用是什么效果 rem用过吗?做不同手机的适配 ...