为了应对神经网络很容易过拟合的问题,2014年 Hinton 提出了一个神器,
**Dropout: A Simple Way to Prevent Neural Networks from Overfitting **
(original paper: http://jmlr.org/papers/v15/srivastava14a.html)

实验结果:

 
 

dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络

 
 

在大规模的神经网络中有这样两个缺点:1. 费时;2. 容易过拟合

对于一个有 N 个节点的神经网络,有了 dropou t后,就可以看做是 2^N 个模型的集合了,但此时要训练的参数数目却是不变的,这就缓解了费时的问题。

论文中做了这样的类比,无性繁殖可以保留大段的优秀基因,而有性繁殖则将基因随机拆了又拆,破坏了大段基因的联合适应性,但是自然选择中选择了有性繁殖,物竞天择,适者生存,可见有性繁殖的强大。

dropout 也能达到同样的效果,它强迫一个神经单元,和随机挑选出来的其他神经单元共同工作,消除减弱了神经元节点间的联合适应性,增强了泛化能力。

每层 Dropout 网络和传统网络计算的不同之处:

 
 

相应的公式:

 
 

对于单个神经元是这样的:

 
 

在训练时,每个神经单元都可能以概率 p 去除;
在测试阶段,每个神经单元都是存在的,权重参数w要乘以p,成为:pw。

看一下在 Keras 里面怎么用 dropout

问题:binary 分类,根据数据集,识别 rocks 和 mock-mines
数据集下载:存在 sonar.csv 里面,http://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data

Baseline 中,NN 具有两个 隐藏层,分别有 60 和 30 个神经元,用 SGD 训练,并用 10-fold cross validation 得到 classification accuracy 为: 86.04%

 
 
 
 
 
 

在 input 和 第一个隐藏层之间,插入一层 dropout ,rate=20%,意思是,5个神经元里面有一个被随机去掉后,accuracy 为:82.18%,下降了一点

 
 

在两个隐藏层之间,第二个隐藏层和 output 层之间加入 dropout 后,accuracy 为:84.00%

 
 

可见本例并不适合用 dropout 的。

什么是 Dropout的更多相关文章

  1. 在RNN中使用Dropout

    dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上.   LSTM的长期记 ...

  2. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  3. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  4. 深度学习(dropout)

    other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: D ...

  5. Deep learning:四十一(Dropout简单理解)

    前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...

  6. 简单理解dropout

    dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "I ...

  7. [转]理解dropout

    理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443     理解dropout 注意:图片都在github上 ...

  8. [CS231n-CNN] Training Neural Networks Part 1 : parameter updates, ensembles, dropout

    课程主页:http://cs231n.stanford.edu/ ___________________________________________________________________ ...

  9. 正则化,数据集扩增,Dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  10. [Neural Networks] Dropout阅读笔记

    多伦多大学Hinton组 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 一.目的 降低overfitting的风险 二.原理 ...

随机推荐

  1. UWP 协议启动

    1.创建通过协议启动的项目 AppDemo 2.在项目的Package.appxmanifest 文件里 Extensions 目录下 <Extensions> <uap:Exten ...

  2. 搞不懂的算法-排序篇<2>

    上一篇排序算法<1>中,排序算法的时间复杂度从N2到NlgN变化,但他们都有一个共同的特点,基于比较和交换数组中的元素来实现排序,我们称这些排序算法为比较排序算法.对于比较排序算法,所有的 ...

  3. 精通css学习记录

    #字体 * 无衬线字体(Sans-serif):Helvetica,Arial,'Lucida Family',Verdana,Tohoma,'Trebuchet MS'  * 有衬线字体(Serif ...

  4. Java中数组的概念与特点

    数组概念: 数组其实也是一个容器,可以用来存储固定个数相同类型的数据数组的定义 数组中存储的数据叫做元素 特点: 1.数组是引用数据类型 2.数组的长度是固定的,也就是说可以存储固定个数的数据 3.数 ...

  5. mysql 最大连接数

    方式一: 一次性修改  服务重启后还原 查看  show variables like 'max_connections%'; 修改 set GLOBAL max_connections=1024; ...

  6. CentOS6.5 静默安装Oracle 11g过程中提示:Exception in thread “main” java.lang.NoClassDefFoundError

    原来是系统中设置了DISPLAY环境变量,执行: [oracle@qa26 database]$ ./runInstaller  -silent -responseFile /usr/local/or ...

  7. nyoj56-阶乘因式分解(一)

    56-阶乘因式分解(一) 内存限制:64MB时间限制:3000msSpecial Judge: No accepted:6submit:7 题目描述: 给定两个数m,n,其中m是一个素数. 将n(0& ...

  8. ansible --help 文档

    > ansible --help Usage: ansible <host-pattern> [options] Define and run a single task 'play ...

  9. PHP图片验证码处理

  10. 计算机网络系统--常用DOS命令

    01.名称:md 用法:md “文件夹名” 用处:批量建立文件夹 02.关机命令 shutdown At 18:00 shutdown –s      18:00关机 shutdown -s -t 3 ...