Error Curves

Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a

method called Linear Discriminant Analysis, which has many interesting properties.
In order to test the algorithm’s efficiency, she collects many datasets. What’s more, each data is
divided into two parts: training data and test data. She gets the parameters of the model on training
data and test the model on test data.
To her surprise, she finds each dataset’s test error curve is just a parabolic curve. A parabolic curve
corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of
the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.
It’s very easy to calculate the minimal error if there is only one test error curve. However, there
are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to
get the tuned parameters that make the best performance on all datasets. So she should take all error
curves into account, i.e., she has to deal with many quadric functions and make a new error definition
to represent the total error. Now, she focuses on the following new function’s minimal which related to
multiple quadric functions.
The new function F(x) is defined as follow:
F(x) = max(Si(x)), i = 1. . . n. The domain of x is [0,1000]. Si(x) is a quadric function.
Josephina wonders the minimum of F(x). Unfortunately, it’s too hard for her to solve this problem.
As a super programmer, can you help her?
Input
The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case
begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100),
b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
Output
For each test case, output the answer in a line. Round to 4 digits after the decimal point.
Sample Input
2
1
2 0 0
2
2 0 0
2 -4 2
Sample Output
0.0000
0.5000

题意

  给定n条二次曲线S(x),定义F(x)=max(Si(x)), 求出F(x)在0~1000上的最小值。

题解:

  三分基础题,三分下凸。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;
const int N = + ;
int T,a[N],b[N],c[N],n;
double f(double x) {
double ans = a[] * x * x + b[] * x + c[];
for(int i = ; i <= n; i++) {
ans = max(ans, a[i] * x * x + b[i] * x + c[i]);
}
return ans;
}
double three_search(double l,double r) {
for(int i = ;i < ; i++) {
double mid = l + (r - l) / ;
double mid2 = r - (r - l) / ;
if(f(mid) > f(mid2)) l = mid;
else r = mid2;
}
return f(l);
}
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
for(int i = ; i <= n; i++) scanf("%d%d%d",&a[i],&b[i],&c[i]);
double ans = three_search(,);
printf("%.4f\n",ans);
}
return ;
}

UVA - 1476 Error Curves 三分的更多相关文章

  1. UVA 1476 - Error Curves(三分法)

    UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...

  2. 【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  3. uva 1476 - Error Curves

    对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...

  4. UVA 5009 Error Curves

    Problem Description Josephina is a clever girl and addicted to Machine Learning recently. She pays m ...

  5. nyoj 1029/hdu 3714 Error Curves 三分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3714 懂了三分思想和F(x)函数的单调性质,这题也就是水题了 #include "stdio ...

  6. hdu 3714 Error Curves(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...

  7. UVALive 5009 Error Curves 三分

    //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...

  8. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  9. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

随机推荐

  1. bzoj3713: [PA2014]Iloczyn(乱搞)

    3713: [PA2014]Iloczyn 题目:传送门 题解: 随手一发水题x2 直接离线啊,斐波那契到了第五十个就炒鸡大了 代码: #include<cstdio> #include& ...

  2. bzoj3715: [PA2014]Lustra(乱搞)

    3715: [PA2014]Lustra 题目:传送门 题解: 随手一发水题x1 随便排序一下...小学生题??? 代码: #include<cstdio> #include<cst ...

  3. 终端安全工具 gartner 排名

    Reviews for Endpoint Detection and Response Solutions What is Endpoint Detection and Response Soluti ...

  4. php基础知识(一)--2017-04-14

    1.Php的两种打开方式: 第一种方式:地址栏打开:http://localhost/0414/qq.php     地址栏输入localhost/  就是phpstudy下的www文件夹 第二种:新 ...

  5. FFmpeg 移植 Android

    近期项目需要解析苹果的HLS流媒体协议,而FFmpeg从0.11.1“Happiness”版本开始,才增加了对HLS协议的支持.目前网上关于FFmpeg编译移植的文章有很多,但大多都是对旧版本的说明. ...

  6. Spark基本运行流程

    不多说,直接上干货! Spark基本运行流程 Application program的组成 Job : 包含多个Task 组成的并行计算,跟Spark action对应. Stage : Job 的调 ...

  7. 【SQL优化】SQL优化工具

    SQLAdvisor 是由美团点评公司北京DBA团队开发维护的 SQL 优化工具:输入SQL,输出索引优化建议. 它基于 MySQL 原生词法解析,再结合 SQL 中的 where 条件以及字段选择度 ...

  8. 『转』How to Think About Your Career

    开始工作的伊始,逐渐转载及阅读Medium上知名华裔设计师Julie Zhuo的文章,这是她在medium上的介绍:Product design VP @ Facebook. Lover of foo ...

  9. iOS 处理图片的一些小 Tip

    UIImage 缓存是怎么回事? 通过 imageNamed 创建 UIImage 时,系统实际上只是在 Bundle 内查找到文件名,然后把这个文件名放到 UIImage 里返回,并没有进行实际的文 ...

  10. javaScript注释 to 颜文字

    将javascript 注释(alert.console)转化为 颜文字语言. http://utf-8.jp/public/aaencode.html