POJ 3233 矩阵快速幂&二分
题意:
给你一个n*n的矩阵 让你求S:
思路:
只知道矩阵快速幂 然后nlogn递推是会TLE的。
所以呢 要把那个n换成log
那这个怎么搞呢
二分!
当k为偶数时:
当k为奇数时:
就按照这么搞就能搞出来了
(我是看的题解才A的,,, 中间乱搞的时候犯了一些脑残的错误)
// by SiriusRen
#include <cstdio>
#include <cstring>
using namespace std;
int n,mod,k;
struct matrix{int a[33][33];void init(){memset(a,0,sizeof(a));}}first;
matrix mul(matrix a,matrix b){
matrix temp;temp.init();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
temp.a[i][j]=(temp.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
return temp;
}
matrix add(matrix a,matrix b){
matrix temp;temp.init();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
temp.a[i][j]=(a.a[i][j]+b.a[i][j])%mod;
return temp;
}
matrix pow(matrix a,int x){
matrix temp;
x--;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
temp.a[i][j]=a.a[i][j];
while(x){
if(x&1)temp=mul(temp,a);
a=mul(a,a),x>>=1;
}
return temp;
}
matrix recursive(int x){
if(x==1)return first;
matrix temp=recursive(x/2);
if(x&1){
matrix jy=pow(first,x/2+1);
temp=add(temp,mul(temp,jy));
return add(jy,temp);
}
else{
matrix jy=pow(first,x/2);
return add(mul(jy,temp),temp);
}
}
int main(){
scanf("%d%d%d",&n,&k,&mod);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&first.a[i][j]);
first.a[i][j]=first.a[i][j]%mod;
}
matrix jy=recursive(k);
for(int i=1;i<=n;i++){
for(int j=1;j<n;j++)
printf("%d ",jy.a[i][j]);
printf("%d\n",jy.a[i][n]);
}
}
POJ 3233 矩阵快速幂&二分的更多相关文章
- poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方 结果模m的相加和是多少 Given a n × n matrix A and a positive i ...
- Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板
题目链接 请猛戳~ Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 ...
- poj 3233 矩阵快速幂+YY
题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- 2017 ECJTU ACM程序设计竞赛 矩阵快速幂+二分
矩阵 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submission ...
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)
M斐波那契数列 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Statu ...
随机推荐
- 应运而生! 双11当天处理数据5PB—HiStore助力打造全球最大列存储数据库
阿里巴巴电商业务中历史数据存储与查询相关业务, 大量采用基于列存储技术的HiStore数据库,双11当天HiStore引擎处理数据记录超过6万亿条.原始存储数据量超过5PB.从单日数据处理量上看,该系 ...
- MySQL_基本操作
sql语句 Sql语句主要用于存取数据,查询数据,更新数据和管理数据库系统. #Sql语句分为3种类型 #1.DDL语句:数据库定义语言: 数据库.表.视图.索引.存储过程,例如CREATE DROP ...
- 【转】Oracle基础结构认知—oracle物理结构 礼记八目 2017-12-13 20:31:06
原文地址:https://www.toutiao.com/i6499008214980362765/ oracle数据库启动:oracle服务启动,通过参数文件查找控制文件,启动控制文件,则控制文件调 ...
- eclipse tomcat发布路径在哪?
- 机器学习之TensorFlow编程环境_TensorFlow_Estimator
title: Machine-learning subtitle: 1. 机器学习之TensorFlow编程环境_TensorFlow_Estimator date: 2018-12-13 10:17 ...
- 【airtest】iOS,Android 依托 jenkins 并行跑
Airtest 只支持一台mac 连接一台iPhone, 以下方法是以“一台mac 连接一台iPhone”为基础,依托jenkins 统一管理多台iPhone. [mac] jenkins mast ...
- BZOJ 1835 [ZJOI2010]基站选址 (线段树优化DP)
题目大意:略 洛谷题面传送门 BZOJ题面传送门 注意题目的描述,是村庄在一个范围内去覆盖基站,而不是基站覆盖村庄,别理解错了 定义$f[i][k]$表示只考虑前i个村庄,一共建了$k$个基站,最后一 ...
- 00074_Array类
1.Array类的概述 此类包含用来操作数组(比如排序和搜索)的各种方法.需要注意,如果指定数组引用为 null,则访问此类中的方法都会抛出空指针异常NullPointerException. 2.常 ...
- 00072_System类
1.概念 (1)System中代表程序所在系统,提供了对应的一些系统属性信息,和系统操作: (2)System类不能手动创建对象,因为构造方法被private修饰,阻止外界创建对象: (3)Syste ...
- VirtualBox安装kali linux过程及安装后无法全屏问题解决方法(2)
? 1 安装说完了,现在来看看怎么全屏吧,虚拟机无法全屏跟咸鱼有什么区别... 首先打开vbox,选择设备(Device)选项里面最下面安装增强工具那个选项(insert guest additi ...