题目描述

N个人坐成一圈玩游戏。一开始我们把所有玩家按顺时针从1到N编号。首先第一回合是玩家1作为庄家。每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把卡片上的数字向所有玩家展示,然后按顺时针从庄家位置数第X个人将被处决即退出游戏。然后卡片将会被放回卡牌堆里并重新洗牌。被处决的人按顺时针的下一个人将会作为下一轮的庄家。那么经过N-1轮后最后只会剩下一个人,即为本次游戏的胜者。现在你预先知道了总共有M张卡片,也知道每张卡片上的数字。现在你需要确定每个玩家胜出的概率。

这里有一个简单的例子:

例如一共有4个玩家,有四张卡片分别写着3,4,5,6.

第一回合,庄家是玩家1,假设他选择了一张写着数字5的卡片。那么按顺时针数1,2,3,4,1,最后玩家1被踢出游戏。

第二回合,庄家就是玩家1的下一个人,即玩家2.假设玩家2这次选择了一张数字6,那么2,3,4,2,3,4,玩家4被踢出游戏。

第三回合,玩家2再一次成为庄家。如果这一次玩家2再次选了6,则玩家3被踢出游戏,最后的胜者就是玩家2.

输入输出格式

输入格式:

第一行包括两个整数N,M分别表示玩家个数和卡牌总数。

接下来一行是包含M个整数,分别给出每张卡片上写的数字。

输出格式:

输出一行包含N个百分比形式给出的实数,四舍五入到两位小数。分别给出从玩家1到玩家N的胜出概率,每个概率之间用空格隔开,最后不要有空格。

输入输出样例

输入样例#1:

5 5

2 3 5 7 11

输出样例#1:

22.72% 17.12% 15.36% 25.44% 19.36%

输入样例#2:

4 4

3 4 5 6

输出样例#2:

25.00% 25.00% 25.00% 25.00%

说明

对于30%的数据,有1<=N<=10

对于50%的数据,有1<=N<=30

对于100%的数据,有1<=N<=50 1<=M<=50 1<=每张卡片上的数字<=50

dp[i][j] 表示有i个人时j的存活概率

枚举使用哪张牌,算出走的步数tp

那么显然有

if(tp>j) dp[i][j]+=dp[i-1][i+j-tp]/m;

if(tp<j) dp[i][j]+=dp[i-1][j-tp]/m;

code:

//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <ctime>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std; inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
} const int N=60;
const int INF=0x3f3f3f3f;
int n,m;
int da[N];
double dp[N][N]; int main() {
n=rd();m=rd();
F(i,1,m) da[i]=rd();
dp[1][1]=1.0;
F(i,2,n) F(j,1,n) F(k,1,m) {
int tp=da[k]%i;
if(tp==0) tp=i;
if(tp>j) dp[i][j]+=dp[i-1][i-tp+j]/m;
else if(tp<j) dp[i][j]+=dp[i-1][j-tp]/m;
}
F(i,1,n) printf("%.2lf%% ",dp[n][i]*100.0);
return 0;
}

[luogu2059 JLOI2013] 卡牌游戏 (概率dp)的更多相关文章

  1. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  2. 【bzoj3191】[JLOI2013]卡牌游戏 概率dp

    题目描述 n个人围成一圈玩游戏,一开始庄家是1.每次从m张卡片中随机选择1张,从庄家向下数个数为卡片上的数的人,踢出这个人,下一个人作为新的庄家.最后一个人获胜.问每个人获胜的概率. 输入 第一行包括 ...

  3. [bzoj3191][JLOI2013][卡牌游戏] (概率dp)

    Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字 ...

  4. 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)

    题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...

  5. P2059 [JLOI2013]卡牌游戏 概率DP

    link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...

  6. Luogu 2059 [JLOI2013]卡牌游戏 - 概率DP

    Solution 设状态 $F[i][j] $为 还剩余 $i$ 个人时, 第 $j$ 个人 的胜率. 边界: $F[1][1] = 1$(只剩下一个人了). 这样设置状态就能使 $i-1$ 个人的答 ...

  7. bzoj3191卡牌游戏——概率DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3191 不用在意每个人的编号,只需看他们相对于庄家的位置即可: 所以设计状态f[i][j]为还 ...

  8. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  9. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

随机推荐

  1. P1546 最短网络 Agri-Net (kruskal)

    题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 题目描述 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其 ...

  2. [USACO17JAN]Promotion Counting

    线段树合并. 正解好像不是线段树合并,但是出于练手的目的写了线段树合并. 大概就是对于左右子树,如果有一个为空,返回非空的,如果都不为空,就把这两个整合到一起就行了. #include <ios ...

  3. Python-基础-day2

    Python环境的安装 安装Python: windows: 1.下载安装包     https://www.python.org/downloads/ 2.安装     默认安装路径:C:\pyth ...

  4. 转载:Java编程风格与命名规范整理

    转载自:传送门 不想复制,点进去看喽23333333

  5. Java进化? Kotlin初探与集成Android项目

    欢迎Follow我的GitHub, 关注我的CSDN. Kotlin是基于JVM的编程语言, 由JetBrains公司开发, 眼下已经开源. IntelliJ IDEA, PyCharm, Andro ...

  6. 【MongoDB】The basic operation of Index in MongoDB

    In the past four blogs, we attached importance to the index, including description and comparison wi ...

  7. javascript——从「最被误解的语言」到「最流行的语言」

    JavaScript曾是"世界上最被误解的语言".由于它担负太多的特性.包含糟糕的交互和失败的设计,但随着Ajax的到来.JavaScript"从最受误解的编程语言演变为 ...

  8. hdu 3177 Crixalis&#39;s Equipment

    Crixalis's Equipment Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. .net mvc Model 验证总结

    ASP.NET MVC4中的Model是自验证的,这是通过.NET4的System.ComponentModel.DataAnnotations命名空间完毕的. 我们要做的仅仅是给Model类的各属性 ...

  10. MVC发送邮件

    <> 发送邮件报错说明 发送邮件 假设发送人的邮箱username与邮箱password都没有填写错误:假设报:參数或变量中有语法错误. server响应为:mail from addre ...