Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 509  Solved: 284
[Submit][Status][Discuss]

Description

给定n个正整数a1,a2,…,an,求

的值(答案模10^9+7)。

Input

第一行一个正整数n。
接下来n行,每行一个正整数,分别为a1,a2,…,an。

Output

仅一行答案。

Sample Input

3
6
10
15

Sample Output

1595

HINT

1<=n<=10^5,1<=ai<=10^7。共3组数据。

Source

 
还是喜欢数论题hhhh,至少不用想那么久。。。。
首先φ是积性函数,这就提示我们可以质因数分解。
我们只要把这个函数在每个质因子下的答案算出来然后都乘起来就行了。
于是现在的问题就变成了当a[1],a[2],,,,a[n]在质数p上的次数分别为 b[1],b[2],,,,b[n]时我们如何求出答案。
 
我一开始想了个比较zz的做法,暴力大背包,,,,dp[i]表示指数和为i的有多少种方法凑到,然后这个质因子的答案
就是1+dp[1]*(p-1)+dp[2]*p*(p-1).......
 
虽然我毒奶一口随机数据的话这个肯定是能过的,,,,然而出题人不可能这么良心的。。。。
一旦有某个质因子在所有数中出现的次数和很大很大那么我这个算法就gg了。。。
 
只能另寻方法。。。
 
最初始的计算某个质因子下答案的式子是:ans=∑φ(p^(c[1]+c[2]+...c[n]))   ,其中0<=c[i]<=b[i]。
然后发现这个也是可以像分解质因数一样合成括号的。
上式=1+ [(p-1)/p]*(π(1+p+p^2+,,,+p^b[i])-1)
 
注意只有当x==0时p^x不用乘(p-1)/p得到φ(p^x)。
 
#include<bits/stdc++.h>
#define ll long long
#define maxn 100005
#define maxm 10000000
#define ha 1000000007
#define pb push_back
using namespace std;
vector<int> g[maxn*];
//g[i]存第i个出现的质因子的指数集合
int cnt=,n,m,dy[maxm+];
int ans=,now,mx[maxn*];
int mul[maxn]; inline int ksm(int x,int y){
int an=;
for(;y;y>>=,x=x*(ll)x%ha) if(y&) an=an*(ll)x%ha;
return an;
} inline void dvd(){
//质因数分解预处理出每个质因子有的指数集合
//dy[i]表示i这个质因子是第几个出现的
m=sqrt(now+0.5);
int c;
for(int i=;i<=m;i++) if(!(now%i)){
c=;
if(!dy[i]) dy[i]=++cnt;
while(!(now%i)) c++,now/=i;
g[dy[i]].pb(c),mx[dy[i]]=max(mx[dy[i]],c); if(now==) break;
} if(now!=){
if(!dy[now]) dy[now]=++cnt;
g[dy[now]].pb(),mx[dy[now]]=max(mx[dy[now]],);
}
} inline void solve(int x){
int tot=,dig=,pos=dy[x];
mul[]=;
//预处理等比数列前缀和
for(int i=;i<=mx[pos];i++){
dig=dig*(ll)x%ha;
mul[i]=mul[i-]+dig;
if(mul[i]>=ha) mul[i]-=ha;
} for(int i=g[pos].size()-;i>=;i--){
tot=tot*(ll)mul[g[pos][i]]%ha;
}
tot--;
if(tot<) tot+=ha;
tot=tot*(ll)(x-)%ha*(ll)ksm(x,ha-)%ha;
tot++; ans=ans*(ll)tot%ha;
} int main(){
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout); scanf("%d",&n);
while(n--){
scanf("%d",&now);
dvd();
} for(int i=;i<=maxm;i++) if(dy[i]) solve(i); printf("%d\n",ans);
return ;
}
 
 

bzoj DZY Loves Math V的更多相关文章

  1. 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)

    3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description ...

  2. [BZOJ] DZY Loves Math 系列 I && II

    为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...

  3. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  4. BZOJ3560 DZY Loves Math V 数论 快速幂

    原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...

  5. BZOJ3560 : DZY Loves Math V

    因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可. 对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的 ...

  6. BZOJ3560 DZY Loves Math V(欧拉函数)

    对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...

  7. BZOJ DZY Loves Math系列

    ⑤(BZOJ 3560) $\Sigma_{i_1|a_1}\Sigma_{i_2|a_2}\Sigma_{i_3|a_3}\Sigma_{i_4|a_4}...\Sigma_{i_n|a_n}\ph ...

  8. [BZOJ3560]DZY Loves Math V(欧拉函数)

    https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...

  9. 【bzoj3560】DZY Loves Math V 欧拉函数

    题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...

随机推荐

  1. 闲话JavaScript与Cookies

    使用 Cookies 我们已经知道,在 document 对象中有一个 cookie 属性.但是 Cookie 又是什么?"某些 Web 站点在您的硬盘上用很小的文本文件存储了一些信息,这些 ...

  2. git使用笔记(四)远程操作

    By francis_hao    Nov 19,2016 以一张图说明远程操作,图片来自参考[2] git clone 从远端主机克隆一个版本库,若省略directory则生成一个和远端同名的版本库 ...

  3. Equal Sums (map的基本应用) 多学骚操作

    C. Equal Sums time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  4. hive对有特殊值null的数据倾斜处理

    对有特殊值的数据倾斜处理 SET mapred.reduce.tasks=20;SET hive.map.aggr=TRUE;SET hive.groupby.skewindata=TRUE;SET ...

  5. BS架构下使用消息队列的工作流程

    异步通信 对于BS(Browser-Server 浏览器)架构,很多情景下server的处理时间较长. 如果浏览器发送请求后,保持跟server的连接,等待server响应,那么一方面会对用户的体验有 ...

  6. event loop 小记

    水平不够,只能整理一下知乎大神的回答,勉强度日这样子 在一个事件循环里,会有两个主要的队列:task queue 和 micro-task quene. 其中 task 包括: script(整体代码 ...

  7. pageContext对象的用法详述

    pageContext对象  这个对象代表页面上下文,该对象主要用于访问JSP之间的共享数据. pageContext是PageContext类的实例,使用pageContext可以访问page.re ...

  8. hdu 2141 Can you find it?(二分查找)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2141 题目大意:查找是否又满足条件的x值. 这里简单介绍一个小算法,二分查找. /* x^2+6*x- ...

  9. python 匿名函数和递归函数

    匿名函数lambda 匿名函数:lambda  x,y:x+y 上述解释:x,y分别是函数的参数,x+y是函数的返回值 匿名函数的命名规则,用lamdba 关键字标识,冒号(:)左侧表示函数接收的参数 ...

  10. HDU1142 (Dijkstra+记忆化搜索)

    A Walk Through the Forest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Jav ...