spoj p104 Matrix-Tree定理
这个问题就是经典的生成树记数问题,题目为spoj p104 highway。
首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵,
D[G],Dij=(i!=j)?0:vi;这里vi为节点i的度数。
A[G],Aij=存在边(u,v),即A为图G的连通01矩阵。
定义Kirchhoff Matrix C[G]=D[G]-A[G],那么C[G]的任意一个n-1阶主子式的行列式的绝对值为图G生成树个数。
这样这个问题就可以比较容易的解决了,行列式的求法为将矩阵用类似于消元的方法消成上三角矩阵(其实我也是记住的代码= =)。
//By BLADEVIL
#include <cstdio>
#include <cstring>
#define maxn 20 using namespace std; int a[maxn][maxn];
double g[maxn][maxn]; bool zero(double x)
{
return (((x<)?-x:x)<1e-);
} void swap(double &a,double &b)
{double c=a;a=b;b=c;} double delte(double a[maxn][maxn],int n)
{
int sign=;
double ans=;
for (int i=;i<=n;i++)
{
if (zero(a[i][i]))
{
int j;
for (j=i+;(j<=n)&&(zero(a[j][i]));j++);
if (j>n) return ;
for (int k=i+;k<=n;k++) swap(a[i][k],a[j][k]);
sign++;
}
ans*=a[i][i];
for (int j=i+;j<=n;j++) a[i][j]/=a[i][i];
for (int j=i+;j<=n;j++)
for (int k=i+;k<=n;k++)
a[j][k]-=a[i][j]*a[k][i];
}
if (sign&) ans=-ans;
return ans;
} void solve()
{
int n,m;
scanf("%d%d",&n,&m);
memset(g,,sizeof g); memset(a,,sizeof a);
for (int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=;
g[x][x]++; g[y][y]++;
}
n--;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (a[i][j]) g[i][j]=-;
printf("%.0f\n",delte(g,n));
} int main()
{
int task;
scanf("%d",&task);
while (task--) solve();
return ;
}
spoj p104 Matrix-Tree定理的更多相关文章
- BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- 【证明与推广与背诵】Matrix Tree定理和一些推广
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...
- 数学-Matrix Tree定理证明
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
- HDU 4305 Lightning Matrix Tree定理
题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...
- BZOJ.4894.天赋(Matrix Tree定理 辗转相除)
题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
- [模板]Matrix Tree定理
结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...
随机推荐
- 多版本python import 问题解决方案
原文http://www.tuicool.com/articles/EnE7nm6 多版本Python共存[支持使用pip安装包] 有时特殊需要会要用到高版本的Python, 但是系统自带的版本又是很 ...
- CE-HTML简介
1.典型的CE-HTML代码如下: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html ...
- TLS协议分析
TLS协议分析 本文目标: 学习鉴赏TLS协议的设计,透彻理解原理和重点细节 跟进一下密码学应用领域的历史和进展 整理现代加密通信协议设计的一般思路 本文有门槛,读者需要对现代密码学有清晰而系统的理解 ...
- hadoop 集群常见错误解决办法
hadoop 集群常见错误解决办法 hadoop 集群常见错误解决办法: (一)启动Hadoop集群时易出现的错误: 1. 错误现象:Java.NET.NoRouteToHostException ...
- nodejs安装错误
network错误: npm ERR! network tunneling socket could not be established, cause=connect ECONNREFUSED 12 ...
- Java Integer比较
今天看微信做了一个选择题,对Integer比较结果有点意外,题目如下: public static void main(String[] args) { Integer a = 1; Integer ...
- 【CF MEMSQL 3.0 D. Third Month Insanity】
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- 【CF MEMSQL 3.0 A. Declined Finalists】
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
- HTTP请求中同步与异步有什么不同
普通的B/S模式就是同步,而AJAX技术就是异步,当然XMLHttpReques有同步的选项. 同步:提交请求->等待服务器处理->处理完毕返回.这个期间客户端浏览器不能干任何事. 异步: ...
- 从零开始学习MXnet(五)MXnet的黑科技之显存节省大法
写完发现名字有点拗口..- -# 大家在做deep learning的时候,应该都遇到过显存不够用,然后不得不去痛苦的减去batchszie,或者砍自己的网络结构呢? 最后跑出来的效果不尽如人意,总觉 ...