NYOJ 349 Sorting It All Out (拓扑排序 )
描述
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
- 输入
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input. - 输出
For each problem instance, output consists of one line. This line should be one of the following three: Sorted sequence determined after xxx relations: yyy...y. Sorted sequence cannot be determined. Inconsistency found after xxx relations. where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. - 样例输入
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0 - 样例输出
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
分析:
首先补充一下拓扑排序的思想:
(1)从有向图中选择一个没有前驱(入度为0)的顶点并输出它。
(2)从图中删除该节点,并且删去从该节点出发的全部有向边。
(3)重复上述操作,知道图中不在存在没有前驱的顶点为止。
这样操作的结果有两种:一种是图中全部定点被输出,这说明图中不存在有向回路;另一种是图中顶点未被全部输出,剩余的顶点均有前驱节点,这说明图中存在有向回路。
这就是一个典型的拓扑排序的应用,如果能够排好序的话,说明就是可以的,如果形成环的话,说明能够构成回路也就是存在冲突,否则就是不能够排好序。
代码:
#include<stdio.h>
#include<iostream>
#include<vector>
#include<queue>
#include<string.h>
using namespace std;
int du[30];
char ch[30];
int n,m,k;
vector<int> v[30];
int init()
{
memset(du,0,sizeof(du));
memset(v,0,sizeof(v));
}
int topSort()
{
int op=1;
k=0;
queue<int >q;
int du1[30];
for(int i=0; i<n; i++)///要把入度的函数复制一下,不然会影响下次的排序
{
du1[i]=du[i];
if(du1[i]==0)
q.push(i);
}
while(!q.empty())
{
//cout<<" ----"<<q.size()<<endl;
if(q.size()>1) op=0;///相当于有多个入度为0的点,也就是还没有排好序
int a=q.front();
q.pop();
char c=a+'A';
ch[k++]=c;
// cout<<"k="<<k<<endl;
for(int i=0; i<v[a].size(); i++)
{
int b=v[a][i];
du1[b]--;
if(du1[b]==0)
q.push(b);
}
}
if(k<n)///形成环,如果没有形成环且能排好序的话,肯定每一个点都要入队一次
return -1;
return op;///op==1,已经排好序;op=1,还没有排好
}
int main()
{
char ch2,ch1;
int a,b;
while(~scanf("%d%d",&n,&m),n,m)
{
init();
int flag=0;
for(int mm=1; mm<=m; mm++)
{
scanf(" %c<%c",&ch1,&ch2);
if(flag!=0) continue;///已经确定当前的序列是有序或者已经发生冲突
a=ch1-'A';
b=ch2-'A';
// cout<<a<<" "<<b<<endl;
v[a].push_back(b);///单向
du[b]++;
flag=topSort();///每次加入一个都要进行一次判断,看能否满足某个条件
if(flag==1)///已经排好序
{
printf("Sorted sequence determined after %d relations: ",mm);
for(int k1=0; k1<k; k1++)
{
printf("%c",ch[k1]);
}
printf(".\n");
}
if(flag==-1)///发生冲突
{
printf("Inconsistency found after %d relations.\n",mm);
}
}
if(flag==0)///到最后还没有排好序
{
printf("Sorted sequence cannot be determined.\n");
}
}
return 0;
}
NYOJ 349 Sorting It All Out (拓扑排序 )的更多相关文章
- ACM: poj 1094 Sorting It All Out - 拓扑排序
poj 1094 Sorting It All Out Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & ...
- poj 1094 Sorting It All Out (拓扑排序)
http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- nyoj349 poj1094 Sorting It All Out(拓扑排序)
nyoj349 http://acm.nyist.net/JudgeOnline/problem.php?pid=349poj1094 http://poj.org/problem?id=10 ...
- [poj1094]Sorting It All Out_拓扑排序
Sorting It All Out poj-1094 题目大意:给出一些字符串之间的大小关系,问能否得到一个唯一的字符串序列,满足权值随下标递增. 注释:最多26个字母,均为大写. 想法:显然,很容 ...
- POJ1094 Sorting It All Out —— 拓扑排序
题目链接:http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Tot ...
- POJ 1094:Sorting It All Out拓扑排序之我在这里挖了一个大大的坑
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 29984 Accepted: 10 ...
- [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- poj 1094 Sorting It All Out_拓扑排序
题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...
随机推荐
- linux命令大全(转载)
在搭建openstack时遇到问题,导致上网查询相关信息.找到一篇不错的文章,希望对大家有用.下附地址: http://blog.csdn.net/junbujianwpl/article/detai ...
- 【面试题】2018年最全Java面试通关秘籍第五套!
[面试题]2018年最全Java面试通关秘籍第五套! 原创 2018-04-26 徐刘根 Java后端技术 第一套:<2018年最全Java面试通关秘籍第一套!> 第二套:<2018 ...
- 常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件 bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheetahcherrypy:一个WEB frameworkctyp ...
- 使用hibernate连接Oracle时的权限问题
在使用hibernate对象关系映射连接和创建表的时候,会涉及到很多权限问题,有些数据库管理会将权限设的很细,我们可以根据后台日志错误和异常信息作出判断. 比如下图所示这个错误(这是我在给银行投产系统 ...
- 官方文档 恢复备份指南八 RMAN Backup Concepts
本章内容 Consistent and Inconsistent RMAN Backups Online Backups and Backup Mode Backup Sets Image Copie ...
- BZOJ 1010 HNOI2008 玩具装箱 斜率优化
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...
- jquery UI 跟随学习笔记——拖拽(Draggable)
引言 这周暂时没有任务下达,所以老大给我的任务就是熟悉jquery相关插件,我就先选择了jquery UI插件,以及jquery库学习. 我用了两天的时候熟悉Interactions模块中的Dragg ...
- EXEL文件转成简书MD表格
EXEL文件转成简书MD表格 0.1.3 mac: https://github.com/fanfeilong/exceltk/blob/master/pub/exceltk.0.1.3.pkg wi ...
- 好用的在线pdf转化器
https://smallpdf.com/cn/compress-pdf
- perf原理再看
vim ./arch/x86/kernel/hw_breakpoint.c perf如何控制采样的频率 perf采样不同的事件,得到的不是一样 cycles: 向PMU中增加不同的函数,增加不同 使用 ...