题目链接

描述

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

  • 输入

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
  • 输出

    For each problem instance, output consists of one line. This line should be one of the following three: Sorted sequence determined after xxx relations: yyy...y. Sorted sequence cannot be determined. Inconsistency found after xxx relations. where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
  • 样例输入

    4 6

    A<B

    A<C

    B<C

    C<D

    B<D

    A<B

    3 2

    A<B

    B<A

    26 1

    A<Z

    0 0
  • 样例输出

    Sorted sequence determined after 4 relations: ABCD.

    Inconsistency found after 2 relations.

    Sorted sequence cannot be determined.

分析:

首先补充一下拓扑排序的思想:

(1)从有向图中选择一个没有前驱(入度为0)的顶点并输出它。

(2)从图中删除该节点,并且删去从该节点出发的全部有向边。

(3)重复上述操作,知道图中不在存在没有前驱的顶点为止。

这样操作的结果有两种:一种是图中全部定点被输出,这说明图中不存在有向回路;另一种是图中顶点未被全部输出,剩余的顶点均有前驱节点,这说明图中存在有向回路。

这就是一个典型的拓扑排序的应用,如果能够排好序的话,说明就是可以的,如果形成环的话,说明能够构成回路也就是存在冲突,否则就是不能够排好序。

代码:

#include<stdio.h>
#include<iostream>
#include<vector>
#include<queue>
#include<string.h>
using namespace std;
int du[30];
char ch[30];
int n,m,k;
vector<int> v[30];
int init()
{
memset(du,0,sizeof(du));
memset(v,0,sizeof(v));
}
int topSort()
{
int op=1;
k=0;
queue<int >q;
int du1[30];
for(int i=0; i<n; i++)///要把入度的函数复制一下,不然会影响下次的排序
{
du1[i]=du[i];
if(du1[i]==0)
q.push(i);
}
while(!q.empty())
{
//cout<<" ----"<<q.size()<<endl;
if(q.size()>1) op=0;///相当于有多个入度为0的点,也就是还没有排好序
int a=q.front();
q.pop();
char c=a+'A';
ch[k++]=c;
// cout<<"k="<<k<<endl;
for(int i=0; i<v[a].size(); i++)
{
int b=v[a][i];
du1[b]--;
if(du1[b]==0)
q.push(b);
}
}
if(k<n)///形成环,如果没有形成环且能排好序的话,肯定每一个点都要入队一次
return -1;
return op;///op==1,已经排好序;op=1,还没有排好
}
int main()
{
char ch2,ch1;
int a,b;
while(~scanf("%d%d",&n,&m),n,m)
{
init();
int flag=0;
for(int mm=1; mm<=m; mm++)
{
scanf(" %c<%c",&ch1,&ch2);
if(flag!=0) continue;///已经确定当前的序列是有序或者已经发生冲突
a=ch1-'A';
b=ch2-'A';
// cout<<a<<" "<<b<<endl;
v[a].push_back(b);///单向
du[b]++;
flag=topSort();///每次加入一个都要进行一次判断,看能否满足某个条件
if(flag==1)///已经排好序
{
printf("Sorted sequence determined after %d relations: ",mm);
for(int k1=0; k1<k; k1++)
{
printf("%c",ch[k1]);
}
printf(".\n");
}
if(flag==-1)///发生冲突
{
printf("Inconsistency found after %d relations.\n",mm);
}
}
if(flag==0)///到最后还没有排好序
{
printf("Sorted sequence cannot be determined.\n");
}
}
return 0;
}

NYOJ 349 Sorting It All Out (拓扑排序 )的更多相关文章

  1. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  2. poj 1094 Sorting It All Out (拓扑排序)

    http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  3. nyoj349 poj1094 Sorting It All Out(拓扑排序)

    nyoj349   http://acm.nyist.net/JudgeOnline/problem.php?pid=349poj1094   http://poj.org/problem?id=10 ...

  4. [poj1094]Sorting It All Out_拓扑排序

    Sorting It All Out poj-1094 题目大意:给出一些字符串之间的大小关系,问能否得到一个唯一的字符串序列,满足权值随下标递增. 注释:最多26个字母,均为大写. 想法:显然,很容 ...

  5. POJ1094 Sorting It All Out —— 拓扑排序

    题目链接:http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Tot ...

  6. POJ 1094:Sorting It All Out拓扑排序之我在这里挖了一个大大的坑

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 29984   Accepted: 10 ...

  7. [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  8. POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang

    Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...

  9. poj 1094 Sorting It All Out_拓扑排序

    题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...

随机推荐

  1. linux命令大全(转载)

    在搭建openstack时遇到问题,导致上网查询相关信息.找到一篇不错的文章,希望对大家有用.下附地址: http://blog.csdn.net/junbujianwpl/article/detai ...

  2. 【面试题】2018年最全Java面试通关秘籍第五套!

    [面试题]2018年最全Java面试通关秘籍第五套! 原创 2018-04-26 徐刘根 Java后端技术 第一套:<2018年最全Java面试通关秘籍第一套!> 第二套:<2018 ...

  3. 常用的python模块及安装方法

    adodb:我们领导推荐的数据库连接组件 bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheetahcherrypy:一个WEB frameworkctyp ...

  4. 使用hibernate连接Oracle时的权限问题

    在使用hibernate对象关系映射连接和创建表的时候,会涉及到很多权限问题,有些数据库管理会将权限设的很细,我们可以根据后台日志错误和异常信息作出判断. 比如下图所示这个错误(这是我在给银行投产系统 ...

  5. 官方文档 恢复备份指南八 RMAN Backup Concepts

    本章内容 Consistent and Inconsistent RMAN Backups Online Backups and Backup Mode Backup Sets Image Copie ...

  6. BZOJ 1010 HNOI2008 玩具装箱 斜率优化

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...

  7. jquery UI 跟随学习笔记——拖拽(Draggable)

    引言 这周暂时没有任务下达,所以老大给我的任务就是熟悉jquery相关插件,我就先选择了jquery UI插件,以及jquery库学习. 我用了两天的时候熟悉Interactions模块中的Dragg ...

  8. EXEL文件转成简书MD表格

    EXEL文件转成简书MD表格 0.1.3 mac: https://github.com/fanfeilong/exceltk/blob/master/pub/exceltk.0.1.3.pkg wi ...

  9. 好用的在线pdf转化器

    https://smallpdf.com/cn/compress-pdf

  10. perf原理再看

    vim ./arch/x86/kernel/hw_breakpoint.c perf如何控制采样的频率 perf采样不同的事件,得到的不是一样 cycles: 向PMU中增加不同的函数,增加不同 使用 ...