题目传送门

题目大意:

  给出n个商品的价格,排成一列,q次查询,每次查询如果你有x的钱,从l格子走到r格子,每种商品有无数个,能买就买,最后还会剩多少钱。

思路:

  每一次买都要找离自己最近的且买的起的商品,这样可以二分区间,用线段树(rmq问题,可以用st表)找到离自己最近且买得起的商品,然后不断的向r逼近,最后就是答案。

  这个思路为什么不会超时的呢,因为可以想象,每次买完一个商品,你的剩余的钱最多也是这个商品价格的余数,而后面你买的起的商品价格肯定比这个小,所以稍微举几个例子就发现不会枚举几次的,有点像斐波那契数列的递减。(最坏的情况是商品价格为7,6,5,4,3,2,1,这样的时间复杂度也许会退化,但发现如果能走完这个过程,至少也要有28块钱,这个钱在买7的时候会直接用完,所以时间复杂度不会退化)。

  借用了队友写的代码,st表解决RMQ真的好短。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int n, q;
ll a[N]; ll dp[N][];
int mm[N];
void init(int n, ll b[])
{
mm[] = -;
for (int i = ; i <= n; ++i)
{
mm[i] = ((i & (i - )) == ) ? mm[i - ] + : mm[i - ];
dp[i][] = b[i];
}
for (int j = ; j <= mm[n]; ++j)
for (int i = ; i + ( << j) - <= n; ++i)
dp[i][j] = min(dp[i][j - ], dp[i + ( << (j - ))][j - ]);
} ll query(int l, int r)
{
int k = mm[r - l + ];
return min(dp[l][k], dp[r - ( << k) + ][k]);
} int main()
{
while (scanf("%d%d", &n, &q) != EOF)
{
for (int i = ; i <= n; ++i) scanf("%lld", a + i); init(n, a);
ll v;
for (int i = , l, r; i <= q; ++i)
{
scanf("%lld%d%d", &v, &l, &r);
while (r - l >= )
{
int ql = l, qr = r, tar = -;
while (qr - ql >= )
{
int mid = (ql + qr) >> ;
if (query(ql, mid) <= v)
{
qr = mid - ;
tar = mid;
}
else
ql = mid + ;
}
if (tar == -) break;
v %= a[tar];
l = tar + ;
}
printf("%lld\n", v);
}
}
return ;
}

gym101201J Shopping 二分+RMQ+数学性质的更多相关文章

  1. BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster( 后缀数组 + 二分 + RMQ + 树状数组 )

    全部串起来做SA, 在按字典序排序的后缀中, 包含每个询问串必定是1段连续的区间, 对每个询问串s二分+RMQ求出包含s的区间. 然后就是求区间的不同的数的个数(经典问题), sort queries ...

  2. Internet 校验和的数学性质

    Internet 校验和(Checksum)仅计算头部的正确性,这一点很重要,这意味着 IP 协议不检查 IPv4 packet 有效载荷部分的数据正确性.为了保证有效载荷部分的正常传输,其他协议必须 ...

  3. 2016 ACM/ICPC Asia Regional Dalian Online 1008 Function 二分+RMQ

    Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...

  4. HDU 5289 Assignment(2015 多校第一场二分 + RMQ)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  5. Bad Hair Day [POJ3250] [单调栈 或 二分+RMQ]

    题意Farmer John的奶牛在风中凌乱了它们的发型……每只奶牛都有一个身高hi(1 ≤ hi ≤ 1,000,000,000),现在在这里有一排全部面向右方的奶牛,一共有N只(1 ≤ N ≤ 80 ...

  6. 【BZOJ5083】普及 单调栈+二分+RMQ

    [BZOJ5083]普及 Description 有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(从左到右或从右到左一个一个取出),使得 不管是从左往右还是从右往左取,都保证每时每刻 ...

  7. Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)

    Strip time limit per test 1 second memory limit per test 256 megabytes input standard input output s ...

  8. HDU - 5289:Assignment(单调队列||二分+RMQ||二分+线段树)

    Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this com ...

  9. 【BZOJ3230】相似子串 后缀数组+二分+RMQ

    [BZOJ3230]相似子串 Description Input 输入第1行,包含3个整数N,Q.Q代表询问组数.第2行是字符串S.接下来Q行,每行两个整数i和j.(1≤i≤j). Output 输出 ...

随机推荐

  1. 通过kfed自动获取磁盘信息的小脚本

    通过kfed自动获取磁盘信息的小脚本 编译KFED [oracle@rac lib]$cd $ORACLE_HOME/rdbms/lib [oracle@rac lib]$ pwd /u01/app/ ...

  2. Solidity 没名字的function(){...}作用

    官方解释: 这个叫做fallback function,当有人 1. 只发送以太币给合约而不带任何输入数据:2. 调用smart contract时调起了一个不存在的方法.会触发执行这个方法. Wha ...

  3. Process management of windows

    igfxem.exe进程是正常的进程.是intel家的核显驱动类的进程.核显即"核芯显卡",是指GPU部分它是与CPU建立在同一内核芯片上,两者完全融合的芯片."核芯显卡 ...

  4. 264E Roadside Trees

    传送门 题目大意 分析 倒着跑LIS表示以i为开头的LIS,于是对于删除可以暴力重算前10棵树.而对于种树,因为高度不超过10且高度两两不同,所以暴力重算比它矮的10棵树即可.对于需要重算的点,将其从 ...

  5. linux内存监控 free

    free 命令详解: 执行命令后总共四行. 第一行: 列头 第二行: total 内存总数: 32881776 used 已经使用的内存数: 8324796 free 空闲的内存数: 24556980 ...

  6. Storm的wordCounter计数器详解

    原文:http://www.maoxiangyi.cn/index.php/archives/362 拓扑 点击(此处)折叠或打开 package cn.jd.storm; import backty ...

  7. this关键字剖析

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  8. Java静态变量的用法:伪单例

    这几天遇到一个问题,一个Service里有一个map,但是这个Service有别的继承,于是每一个Service都会创建一个map,但是这个map应该是公用的,于是就有问题了...(按结构说Servi ...

  9. vs2017安装后自动应用许可证

    Vs2017专业版 "C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\Common7\IDE\StorePI ...

  10. SQL server T-SQL存储过程

    简介 存储过程是由一些SQL语句和控制语句组成的被封装起来的过程,它驻留在数据库中,可以被客户应用程序调用,也可以从另一个过程或触发器调用.它的参数可以被传递和返回.与应用程序中的函数过程类似,存储过 ...