3027: [Ceoi2004]Sweet

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 135  Solved: 66
[Submit][Status][Discuss]

Description

John得到了n罐糖果。不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的)。第i个糖果罐里有 mi个糖果。John决定吃掉一些糖果,他想吃掉至少a个糖果,但不超过b个。问题是John 无法确定吃多少个糖果和每种糖果各吃几个。有多少种方法可以做这件事呢?

Input

从标准输入读入每罐糖果的数量,整数a到b 
 
John能够选择的吃掉糖果的方法数(满足以上条件)

Output

把结果输出到标准输出(把答案模 2004 输出)

1<=N<=10,0<=a<=b<=10^7,0<=Mi<=10^6

Sample Input

2 1 3
3
5

Sample Output

9

HINT

(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),(1,1),(1,2),(2,1)

Source

对糖果是否装满容斥,通过插板法计算方案。

模数不为质数但n很小,可以将模数乘n!之后除n!。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
LL n,a,b;
LL m[];
LL mod=,mul=;
LL c(LL x,LL y) {
if(x<y) return ;
LL ans=;
for(int i=x;i>=x-y+;i--) ans=1LL*ans*i%mod;
return (ans/mul)%2004LL;
}
LL cnt(LL x) {
LL ans=;
for(int i=;i<(<<n);i++) {
LL f=,s=x;
for(int j=;j<=n;j++) if((<<(j-))&i) f++,s-=m[j]+;
if(s<) continue;
if(f&) ans-=c(s+n,n);
else ans+=c(s+n,n);
ans%=2004LL;
}
return ans;
}
int main() {
scanf("%lld%lld%lld",&n,&a,&b);
for(int i=;i<=n;i++) scanf("%lld",&m[i]);
for(int i=;i<=n;i++) mod*=i,mul*=i;
printf("%lld",((cnt(b)-cnt(a-))%2004LL+2004LL)%2004LL);
}

[BZOJ3027][Ceoi2004]Sweet 容斥+组合数的更多相关文章

  1. BZOJ3027 - [CEOI2004]Sweet

    Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...

  2. [AHOI2015 Junior] [Vijos P1943] 上学路上 【容斥+组合数】

    题目链接:Vijos - P1943 题目分析 这是 AHOI 普及组的题目,然而我并不会做= =弱到不行= = 首先,从 (x, 0) 到 (0, y) 的最短路,一定是只能向左走和向上走,那么用组 ...

  3. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  4. 【容斥+组合数】Massage @2018acm徐州邀请赛 E

    问题 E: Massage 时间限制: 1 Sec  内存限制: 64 MB 题目描述 JSZKC  feels  so  bored  in  the  classroom  that  he  w ...

  5. 【BZOJ4665】小w的喜糖 容斥+组合数

    [BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...

  6. 2018.12.30 bzoj3027: [Ceoi2004]Sweet(生成函数+搜索)

    传送门 生成函数好题. 题意简述:给出n个盒子,第iii个盒子里有mim_imi​颗相同的糖(但不同盒子中的糖不相同),问有多少种选法可以从各盒子中选出数量在[a,b][a,b][a,b]之间的糖果. ...

  7. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  8. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  9. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

随机推荐

  1. maven中进行go的编译

    maven提供的插件maven-antrun-plugin真是个好东东,使得maven可以利用ant的很多功能. 最近需要实现在maven中实现对go代码的编译,添加如下代码在pom文件中即可. &l ...

  2. Windows下的Memcache安装与Java部署

    Windows下的Memcache安装: 1. 下载memcached的windows稳定版,解压放某个盘下面,比如在c:\memcached 2. 在终端(也即cmd命令界面)下输入 ‘c:\mem ...

  3. 在Linux下调试Python代码的各种方法

    这是一个我用于调试或分析工具概述,不一定是完整全面,如果你知道更好的工具,请在评论处标记. 日志 是的,的确,不得不强调足够的日志记录对应用程序是多么的重要.您应该记录重要的东西,如果你的记录足够好的 ...

  4. 【bzoj1922】[Sdoi2010]大陆争霸 堆优化Dijkstra

    题目描述 一张n个点m条边的图,通过每条边需要一定的时间.有一些限制条件,每个限制条件形如“x保护y”,表示到达y的最短时间不能小于到达x的最短时间(即如果在其之前到达,则需要等待至xd到达).问1到 ...

  5. JAVA 异常处理的认知学习过程

    没有异常处理 学生时代,我编写的java代码中,很少会有try catch.最主要的原因如下: 应用的规模很小 没有不确定因素 代码可控性高 如果规模小,往往就没有复杂的逻辑链路,整个软件的分层也很浅 ...

  6. Netscaler GSLB的主备数据中心解决方案

    Netscaler GSLB的主备数据中心解决方案 http://blog.51cto.com/caojin/1898182 GSLB的主.备数据中心解决方案思路: 其实这只是多数据中心的一个特例而已 ...

  7. [洛谷P3690]【模板】Link Cut Tree (动态树)

    题目大意:给定$n$个点以及每个点的权值,要你处理接下来的$m$个操作.操作有$4$种.操作从$0到3编号.点从1到n编号. $0,x,y$:代表询问从$x$到$y$的路径上的点的权值的$xor$和. ...

  8. Conjugate 解题报告

    Conjugate 问题描述 在不存在的 \(\text{noip day3}\) 中,小 \(\text{w}\) 见到了一堆堆的谜题. 比如这题为什么会叫共轭? 他并不知道答案. 有 \(n\) ...

  9. BZOJ 3629 JLOI2014 聪明的燕姿 约数和+DFS

    根据约数和公式来拆s,最后再把答案乘出来,我们发先这样的话递归层数不会太大每层枚举次数也不会太多,然而我们再来个剪枝就好了 #include<cstdio> #include<ios ...

  10. java过滤器和监听器详解

    过滤器 1.Filter工作原理(执行流程) 当客户端发出Web资源的请求时,Web服务器根据应用程序配置文件设置的过滤规则进行检查,若客户请求满足过滤规则,则对客户请求/响应进行拦截,对请求头和请求 ...