The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8

给出一个无向有权图,然后给出k个路径,进行判断,是否是能访问所有城市的简单环,显然需要记录访问了几个城市,以及路径是否通,如果路径不通直接是NA,然后考虑其他的,要形成环,路径最少得有n + 1个点,且首尾要相同,而且路径要访问所有点,如果都满足了,要判断是不是简单环,简单环必须是n + 1个点。
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <set>
#define inf 0x3f3f3f3f
#define MAX
using namespace std;
int mp[][];
int path[];
int n,m,k;
int u,v,w,kk,mint,mind = inf;
int main() {
scanf("%d%d",&n,&m);
for(int i = ;i < m;i ++) {
scanf("%d%d%d",&u,&v,&w);
mp[u][v] = mp[v][u] = w;
}
scanf("%d",&k);
for(int i = ;i <= k;i ++) {
scanf("%d",&kk);
int vis[] = {},c = ,d = ;
for(int j = ;j < kk;j ++) {
scanf("%d",&path[j]);
if(!vis[path[j]]) c ++;
vis[path[j]] ++;
}
for(int j = ;j < kk;j ++) {
if(mp[path[j]][path[j - ]]) {
d += mp[path[j]][path[j - ]];
}
else {
c = -;
break;
}
}
if(c == -) printf("Path %d: NA (Not a TS cycle)\n",i);
else if(kk <= n || c < n || path[] != path[kk - ]) printf("Path %d: %d (Not a TS cycle)\n",i,d);
else {
if(kk == n + ) printf("Path %d: %d (TS simple cycle)\n",i,d);
else printf("Path %d: %d (TS cycle)\n",i,d);
if(mind > d) {
mint = i;
mind = d;
}
}
}
printf("Shortest Dist(%d) = %d",mint,mind);
}

1150 Travelling Salesman Problem(25 分)的更多相关文章

  1. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  2. 1150 Travelling Salesman Problem

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  4. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  5. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  8. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. 【leetcode刷题笔记】Palindrome Partitioning II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  2. nodejs安装,配置环境,使用express建立一个新项目

    1.下载nodejs安装包 去nodejs官网下载最新版本就行,网址:http://nodejs.cn/download/,点击自己适用的系统,自动下载跟电脑操作系统位数符合的安装包, 下载下来安装包 ...

  3. String和StringBuilder、StringBuffer

    Java平台提供了两种类型的字符串:String和StringBuffer/StringBuilder String 只读字符串,这里的只读并不是指String类型变量无法被修改,而是指String类 ...

  4. 20145240 《Java程序设计》第五次实验报告

    20145240 <Java程序设计>第五次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1452 指导教师:娄嘉鹏 实验日期:2016.05.06 实验 ...

  5. Kubernetes Metrics-Server

    github地址:https://github.com/kubernetes-incubator/metrics-server 官网介绍:https://kubernetes.io/docs/task ...

  6. poj 2762 Going from u to v or from v to u?【强连通分量缩点+拓扑排序】

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15812 ...

  7. CCNA 课程 七

    WAN(Wide Area Network)广域网 运行在OSI模型的数据链路层.物理层. 数据链路层的协议主要有: HDLC  (High-Level Data Link Control 高级数据链 ...

  8. HTML图片热区 map area 标签

    实例 <img src ="planets.gif" alt="Planets" usemap ="#planetmap" /> ...

  9. js动态添加和删除标签

    html代码 <h1>动态添加和删除标签</h1> <div id="addTagTest"> <table> <thead& ...

  10. POJ 3376 Finding Palindromes (tire树+扩展kmp)

    很不错的一个题(注意string会超时) 题意:给你n串字符串,问你两两匹配形成n*n串字符串中有多少个回文串 题解:我们首先需要想到多串字符串存储需要trie树(关键),然后我们正序插入倒序匹配就可 ...