Problem Description
There's a queue obeying the first in first out rule. Each time you can either push a number into the queue (+i), or pop a number out from the queue (-i). After a series of operation, you get a sequence (e.g. +1 -1 +2 +4 -2 -4). We call this sequence a queue sequence.

Now you are given a queue sequence and asked to perform several operations:

1. insert p
First you should find the smallest positive number (e.g. i) that does not appear in the current queue sequence, then you are asked to insert the +i at position p (position starts from 0). For -i, insert it into the right most position that result in a valid queue sequence (i.e. when encountered with element -x, the front of the queue should be exactly x).
For example, (+1 -1 +3 +4 -3 -4) would become (+1 +2 -1 +3 +4 -2 -3 -4) after operation 'insert 1'.
2. remove i
Remove +i and -i from the sequence.
For example, (+1 +2 -1 +3 +4 -2 -3 -4) would become (+1 +2 -1 +4 -2 -4) after operation 'remove 3'.
3. query i
Output the sum of elements between +i and -i. For example, the result of query 1, query 2, query 4 in sequence (+1 +2 -1 +4 -2 -4) is 2, 3(obtained by -1 + 4), -2 correspond.

 
Input
There are less than 25 test cases. Each case begins with a number indicating the number of operations n (1 ≤ n ≤ 100000). The following n lines with be 'insert p', 'remove i' or 'query i'(0 ≤ p ≤ length (current sequence), 1 ≤ i, i is granted to be in the sequence).
In each case, the sequence is empty initially.
The input is terminated by EOF.
 
Output
Before each case, print a line "Case #d:" indicating the id of the test case.
After each operation, output the sum of elements between +i and -i.
 
题目大意:这题太难描述了不讲了,亏出题人能想出这么难讲的题……
思路:对于插入最小正数,有一个优先队列维护即可(咋这么多人喜欢用线段树……)
然后序列用一个平衡树维护,我选择了treap,每个结点的右儿子在序列的左边,右结点在序列的右边。
每个点存他的值(val)、这颗子树的负数的总数(neg)、这颗子树的结点的总数(size)、这颗子树的权和(sum)。
可以发现正数和负数的排列是一样的(FIFO),那么插入的正数前面有多少个正数,那么插入的负数前面就有多少个负数,把这个多少个正数算出来,然后插负数的时候尽量往右插即可。
删除操作,在插入的时候记录正数和负数在那个结点上,删除的时候直接旋转到底删掉。
查询操作,因为我们把结点位置记录起来了,那么对于区间[a,b],在a所在的结点往上走,可以算出[a, ~)的权和,同理可以算出(~, b]的权和,然后这两个的和减去所有的数的和(容斥原理)就是这个查询的答案(由于总和一定是0,所以不用减了)。
 
代码(796MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef long long LL; const int MAXN = * ;
const int n = ;
int weight[MAXN], child[MAXN][], size[MAXN], neg[MAXN], val[MAXN], pre[MAXN];
LL sum[MAXN];
int pos[MAXN];
int stk[MAXN], top, node_cnt; int m, p, x, root;
char s[]; priority_queue<int> Q;
int int_cnt; void test(int x) {
if(child[x][]) test(child[x][]);
cout<<val[x]<<" "<<sum[x]<<" "<<x<<" "<<pre[x]<<" "<<(child[pre[x]][] == x)<<endl;
//cout<<val[x]<<endl;
if(child[x][]) test(child[x][]);
} void init() {
while(!Q.empty()) Q.pop();
int_cnt = top = node_cnt = ;
} int new_int() {
if(!Q.empty()) {
int ret = -Q.top(); Q.pop();
return ret;
}
return ++int_cnt;
} int new_node(int f, int v) {
int x = (top ? stk[top--] : ++node_cnt);
pre[x] = f;
sum[x] = val[x] = v;
if(v < ) pos[n - v] = x;
else pos[v] = x;
size[x] = ; neg[x] = (v < );
weight[x] = rand();
child[x][] = child[x][] = ;
return x;
} void update(int x) {
sum[x] = sum[child[x][]] + sum[child[x][]] + val[x];
size[x] = size[child[x][]] + size[child[x][]] + ;
neg[x] = neg[child[x][]] + neg[child[x][]] + (val[x] < );
} void rotate(int &x, int t) {
int y = child[x][t];
child[x][t] = child[y][t ^ ];
child[y][t ^ ] = x;
pre[y] = pre[x]; pre[x] = y;
pre[child[x][t]] = x;
update(x); update(y);
x = y;
} void insert1(int f, int &x, int k, int v) {
if(x == ) x = new_node(f, v);
else {
int t = (size[child[x][]] + <= k);
insert1(x, child[x][t], k - t * (size[child[x][]] + ), v);
if(weight[child[x][t]] < weight[x]) rotate(x, t);
}
update(x);
} int cnt_pos(int x, int t) {
if(!x) return ;
int ret = cnt_pos(pre[x], child[pre[x]][] == x);
if(t == ) ret += size[child[x][]] - neg[child[x][]] + (val[x] > );
return ret;
} void insert2(int f, int &x, int k, int v) {
if(x == ) x = new_node(f, v);
else {
int t = (neg[child[x][]] + (val[x] < ) <= k);
insert2(x, child[x][t], k - t * (neg[child[x][]] + (val[x] < )), v);
if(weight[child[x][t]] < weight[x]) rotate(x, t);
}
update(x);
} void remove(int &x) {
if(child[x][] && child[x][]) {
int t = weight[child[x][]] < weight[child[x][]];
rotate(x, t);
remove(child[x][t ^ ]);
} else {
stk[++top] = x;
pre[child[x][]] = pre[child[x][]] = pre[x];
x = child[x][] + child[x][];
}
if(x > ) update(x);
} LL query1(int x, int t) {
if(!x) return ;
LL ret = query1(pre[x], child[pre[x]][] == x);
if(t == ) ret += sum[child[x][]] + val[x];
return ret;
} LL query2(int x, int t) {
if(!x) return ;
LL ret = query2(pre[x], child[pre[x]][] == x);
if(t == ) ret += sum[child[x][]] + val[x];
return ret;
} LL query(int x, int a, int b) {
LL ret = query1(pre[a], child[pre[a]][] == a) + sum[child[a][]];
ret += query2(pre[b], child[pre[b]][] == b) + sum[child[b][]];
return ret;
} void update_parent(int t) {
while(t) update(t), t = pre[t];
} int main() {
for(int t = ; ; ++t) {
if(scanf("%d", &m) == EOF) break;
init();
printf("Case #%d:\n", t);
root = ;
while(m--) {
scanf("%s%d", s, &x);
if(*s == 'i') {
int tmp = new_int();
insert1(, root, x, tmp);
int k = cnt_pos(pos[tmp], ) - ;
insert2(, root, k, -tmp);
}
if(*s == 'r') {
if(root == pos[x]) {
remove(root);
}
else {
int t = pos[x], p = pre[t];
remove(child[p][child[p][] == t]);
update_parent(p);
}
int y = x + n;
if(root == pos[y]) {
remove(root);
}
else {
int t = pos[y], p = pre[t];
remove(child[p][child[p][] == t]);
update_parent(p);
}
Q.push(-x);
}
if(*s == 'q') {
printf("%I64d\n", query(root, pos[x], pos[x + n]));
}
//test(root);
}
}
}

HDU 4441 Queue Sequence(优先队列+Treap树)(2012 Asia Tianjin Regional Contest)的更多相关文章

  1. HDU 4433 locker(DP)(2012 Asia Tianjin Regional Contest)

    Problem Description A password locker with N digits, each digit can be rotated to 0-9 circularly.You ...

  2. HDU-4432-Sum of divisors ( 2012 Asia Tianjin Regional Contest )

    Sum of divisors Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4436 str2int(后缀自动机)(2012 Asia Tianjin Regional Contest)

    Problem Description In this problem, you are given several strings that contain only digits from '0' ...

  4. HDU 4433 locker 2012 Asia Tianjin Regional Contest 减少国家DP

    意甲冠军:给定的长度可达1000数的顺序,图像password像锁.可以上下滑动,同时会0-9周期. 每个操作.最多三个数字连续操作.现在给出的起始序列和靶序列,获得操作的最小数量,从起始序列与靶序列 ...

  5. HDU 4431 Mahjong(枚举+模拟)(2012 Asia Tianjin Regional Contest)

    Problem Description Japanese Mahjong is a four-player game. The game needs four people to sit around ...

  6. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  7. HDU 4441 Queue Sequence

    http://acm.hdu.edu.cn/showproblem.php?pid=4441 题意:对于一个序列,每次有三种操作   insert pos  表示在pos插入一个数,这个数是最小的正数 ...

  8. HDU 4441 Queue Sequence(splay)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4441 题意:一个数列,三种操作:(1)插入:找到没在当前数列中的最小的正整数i,将其插在位置p之后,并 ...

  9. HDU 4468 Spy(KMP+贪心)(2012 Asia Chengdu Regional Contest)

    Description “Be subtle! Be subtle! And use your spies for every kind of business. ”― Sun Tzu“A spy w ...

随机推荐

  1. Do not mutate vuex store state outside mutation handlers.

    组件代码: selectItem(item,index) { this.selectPlay({ list: this.songs, index }) }, ...mapActions([ 'sele ...

  2. Java数据结构的实现

    1.基于数组的链表 package array; import java.util.Arrays; /** * 基于数组的链表 * * @author 王彪 * */ public class MyA ...

  3. [Oracle]Audit(一)--认识Audit

    1.Audit的概念 Audit是监视和记录用户对数据库进行的操作,以供DBA进行问题分析.利用Audit功能,可以完成以下任务: 监视和收集特定数据库活动的数据.例如管理员能够审计哪些表被更新,在某 ...

  4. c# 说说开发通用通信库,尤其是分布式服务的通信

    来,牛皮需要吹起,IT行业需要自娱自乐.开篇吹牛..... 现在我们通信真是各种各样,各种组件,但是就我的看法,功能越完善,封装越完善,牺牲的性能可能就越大,代码量就越大. 当然这不能阻挡IT大军的脚 ...

  5. duilib属性列表

    <?xml version="1.0" encoding="UTF-8"?> <!-- 可能有错漏,欢迎补充.wangchyz(wangchy ...

  6. Linux性能监控工具 gtop

    给大家介绍一款性能监控工具,个人对比界面比top美观,常用指标比较清晰毕竟top上的指标不是每个人都能熟悉,也不是所有指标参数都需要看,对于新手也不便查找,好了说的再多先上图大家参观一下. 1.安装需 ...

  7. css实现下拉菜单功能(多中实现方式即原理)

    引导思路: 1.需要用到的元素:position hover (z-index)  或(overflow)或(display)等等. 关键点就是div的溢出部分的处理. 2.实现过程: 2.1:就是要 ...

  8. React中的全选反选问题

    全选反选问题 1.在state里维护一个数组,例如showArr:[] 2.绑定点击事件的时候将当前这个当选按钮的index加进来 <span className='arrow' onClick ...

  9. css表格

    今天写某个平台的前端数据展示 主要使用表格展示 正好复习总结一下css的表格 首先说说thead.tbody.tfoot <thead></thead> <tbody&g ...

  10. grafana使用json数据源监控数据

    功能实现完后有部分数据一直在波动,就产生了想把这个数据波动集成到grafana形成可视化界面的监控,但grafana不支持mongo数据库又懒得去用其他工具转换,特意看了下grafana的databa ...