Problem Description
There's a queue obeying the first in first out rule. Each time you can either push a number into the queue (+i), or pop a number out from the queue (-i). After a series of operation, you get a sequence (e.g. +1 -1 +2 +4 -2 -4). We call this sequence a queue sequence.

Now you are given a queue sequence and asked to perform several operations:

1. insert p
First you should find the smallest positive number (e.g. i) that does not appear in the current queue sequence, then you are asked to insert the +i at position p (position starts from 0). For -i, insert it into the right most position that result in a valid queue sequence (i.e. when encountered with element -x, the front of the queue should be exactly x).
For example, (+1 -1 +3 +4 -3 -4) would become (+1 +2 -1 +3 +4 -2 -3 -4) after operation 'insert 1'.
2. remove i
Remove +i and -i from the sequence.
For example, (+1 +2 -1 +3 +4 -2 -3 -4) would become (+1 +2 -1 +4 -2 -4) after operation 'remove 3'.
3. query i
Output the sum of elements between +i and -i. For example, the result of query 1, query 2, query 4 in sequence (+1 +2 -1 +4 -2 -4) is 2, 3(obtained by -1 + 4), -2 correspond.

 
Input
There are less than 25 test cases. Each case begins with a number indicating the number of operations n (1 ≤ n ≤ 100000). The following n lines with be 'insert p', 'remove i' or 'query i'(0 ≤ p ≤ length (current sequence), 1 ≤ i, i is granted to be in the sequence).
In each case, the sequence is empty initially.
The input is terminated by EOF.
 
Output
Before each case, print a line "Case #d:" indicating the id of the test case.
After each operation, output the sum of elements between +i and -i.
 
题目大意:这题太难描述了不讲了,亏出题人能想出这么难讲的题……
思路:对于插入最小正数,有一个优先队列维护即可(咋这么多人喜欢用线段树……)
然后序列用一个平衡树维护,我选择了treap,每个结点的右儿子在序列的左边,右结点在序列的右边。
每个点存他的值(val)、这颗子树的负数的总数(neg)、这颗子树的结点的总数(size)、这颗子树的权和(sum)。
可以发现正数和负数的排列是一样的(FIFO),那么插入的正数前面有多少个正数,那么插入的负数前面就有多少个负数,把这个多少个正数算出来,然后插负数的时候尽量往右插即可。
删除操作,在插入的时候记录正数和负数在那个结点上,删除的时候直接旋转到底删掉。
查询操作,因为我们把结点位置记录起来了,那么对于区间[a,b],在a所在的结点往上走,可以算出[a, ~)的权和,同理可以算出(~, b]的权和,然后这两个的和减去所有的数的和(容斥原理)就是这个查询的答案(由于总和一定是0,所以不用减了)。
 
代码(796MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef long long LL; const int MAXN = * ;
const int n = ;
int weight[MAXN], child[MAXN][], size[MAXN], neg[MAXN], val[MAXN], pre[MAXN];
LL sum[MAXN];
int pos[MAXN];
int stk[MAXN], top, node_cnt; int m, p, x, root;
char s[]; priority_queue<int> Q;
int int_cnt; void test(int x) {
if(child[x][]) test(child[x][]);
cout<<val[x]<<" "<<sum[x]<<" "<<x<<" "<<pre[x]<<" "<<(child[pre[x]][] == x)<<endl;
//cout<<val[x]<<endl;
if(child[x][]) test(child[x][]);
} void init() {
while(!Q.empty()) Q.pop();
int_cnt = top = node_cnt = ;
} int new_int() {
if(!Q.empty()) {
int ret = -Q.top(); Q.pop();
return ret;
}
return ++int_cnt;
} int new_node(int f, int v) {
int x = (top ? stk[top--] : ++node_cnt);
pre[x] = f;
sum[x] = val[x] = v;
if(v < ) pos[n - v] = x;
else pos[v] = x;
size[x] = ; neg[x] = (v < );
weight[x] = rand();
child[x][] = child[x][] = ;
return x;
} void update(int x) {
sum[x] = sum[child[x][]] + sum[child[x][]] + val[x];
size[x] = size[child[x][]] + size[child[x][]] + ;
neg[x] = neg[child[x][]] + neg[child[x][]] + (val[x] < );
} void rotate(int &x, int t) {
int y = child[x][t];
child[x][t] = child[y][t ^ ];
child[y][t ^ ] = x;
pre[y] = pre[x]; pre[x] = y;
pre[child[x][t]] = x;
update(x); update(y);
x = y;
} void insert1(int f, int &x, int k, int v) {
if(x == ) x = new_node(f, v);
else {
int t = (size[child[x][]] + <= k);
insert1(x, child[x][t], k - t * (size[child[x][]] + ), v);
if(weight[child[x][t]] < weight[x]) rotate(x, t);
}
update(x);
} int cnt_pos(int x, int t) {
if(!x) return ;
int ret = cnt_pos(pre[x], child[pre[x]][] == x);
if(t == ) ret += size[child[x][]] - neg[child[x][]] + (val[x] > );
return ret;
} void insert2(int f, int &x, int k, int v) {
if(x == ) x = new_node(f, v);
else {
int t = (neg[child[x][]] + (val[x] < ) <= k);
insert2(x, child[x][t], k - t * (neg[child[x][]] + (val[x] < )), v);
if(weight[child[x][t]] < weight[x]) rotate(x, t);
}
update(x);
} void remove(int &x) {
if(child[x][] && child[x][]) {
int t = weight[child[x][]] < weight[child[x][]];
rotate(x, t);
remove(child[x][t ^ ]);
} else {
stk[++top] = x;
pre[child[x][]] = pre[child[x][]] = pre[x];
x = child[x][] + child[x][];
}
if(x > ) update(x);
} LL query1(int x, int t) {
if(!x) return ;
LL ret = query1(pre[x], child[pre[x]][] == x);
if(t == ) ret += sum[child[x][]] + val[x];
return ret;
} LL query2(int x, int t) {
if(!x) return ;
LL ret = query2(pre[x], child[pre[x]][] == x);
if(t == ) ret += sum[child[x][]] + val[x];
return ret;
} LL query(int x, int a, int b) {
LL ret = query1(pre[a], child[pre[a]][] == a) + sum[child[a][]];
ret += query2(pre[b], child[pre[b]][] == b) + sum[child[b][]];
return ret;
} void update_parent(int t) {
while(t) update(t), t = pre[t];
} int main() {
for(int t = ; ; ++t) {
if(scanf("%d", &m) == EOF) break;
init();
printf("Case #%d:\n", t);
root = ;
while(m--) {
scanf("%s%d", s, &x);
if(*s == 'i') {
int tmp = new_int();
insert1(, root, x, tmp);
int k = cnt_pos(pos[tmp], ) - ;
insert2(, root, k, -tmp);
}
if(*s == 'r') {
if(root == pos[x]) {
remove(root);
}
else {
int t = pos[x], p = pre[t];
remove(child[p][child[p][] == t]);
update_parent(p);
}
int y = x + n;
if(root == pos[y]) {
remove(root);
}
else {
int t = pos[y], p = pre[t];
remove(child[p][child[p][] == t]);
update_parent(p);
}
Q.push(-x);
}
if(*s == 'q') {
printf("%I64d\n", query(root, pos[x], pos[x + n]));
}
//test(root);
}
}
}

HDU 4441 Queue Sequence(优先队列+Treap树)(2012 Asia Tianjin Regional Contest)的更多相关文章

  1. HDU 4433 locker(DP)(2012 Asia Tianjin Regional Contest)

    Problem Description A password locker with N digits, each digit can be rotated to 0-9 circularly.You ...

  2. HDU-4432-Sum of divisors ( 2012 Asia Tianjin Regional Contest )

    Sum of divisors Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. HDU 4436 str2int(后缀自动机)(2012 Asia Tianjin Regional Contest)

    Problem Description In this problem, you are given several strings that contain only digits from '0' ...

  4. HDU 4433 locker 2012 Asia Tianjin Regional Contest 减少国家DP

    意甲冠军:给定的长度可达1000数的顺序,图像password像锁.可以上下滑动,同时会0-9周期. 每个操作.最多三个数字连续操作.现在给出的起始序列和靶序列,获得操作的最小数量,从起始序列与靶序列 ...

  5. HDU 4431 Mahjong(枚举+模拟)(2012 Asia Tianjin Regional Contest)

    Problem Description Japanese Mahjong is a four-player game. The game needs four people to sit around ...

  6. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  7. HDU 4441 Queue Sequence

    http://acm.hdu.edu.cn/showproblem.php?pid=4441 题意:对于一个序列,每次有三种操作   insert pos  表示在pos插入一个数,这个数是最小的正数 ...

  8. HDU 4441 Queue Sequence(splay)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4441 题意:一个数列,三种操作:(1)插入:找到没在当前数列中的最小的正整数i,将其插在位置p之后,并 ...

  9. HDU 4468 Spy(KMP+贪心)(2012 Asia Chengdu Regional Contest)

    Description “Be subtle! Be subtle! And use your spies for every kind of business. ”― Sun Tzu“A spy w ...

随机推荐

  1. Linux中软件使用笔记

    刚刚接触Linux的小白,难免会碰到各种小问题,不要灰心,总有办法的... 1.搜狗输入法崩溃,打不出中文?都是乱码?一招制敌! 在Terminal中输入下面命令后重启电脑即可重生- 还有,是Sogo ...

  2. some small knowledge

    cookie 增查 <!--1.语义化标签的作用--> <!--1.1 从开发角度考虑是提高代码的可读性可维护性--> <!--1.2 网站的发布者:seo 搜索引擎优化 ...

  3. js中实现页面跳转(返回前一页、后一页)

    一:JS 重载页面,本地刷新,返回上一页 代码如下: <a href="javascript:history.go(-1)">返回上一页</a> <a ...

  4. CTRL+F5 和F5 两种刷新有什么区别

  5. 用户交互input

    input() 函数 接收到的都是str,如果输入为数字,打印结果想进行运算,此时需要转义.语法:内容=input("提示信息")这里可以直接获取到用户输入的内容. a = inp ...

  6. sqlachemy详解

    实习期老大让我学Python...学了很久了好吗,不过确实对其中的一些原理性的东西还不够深入. 比如今天要说的sqlachemy,结合网上做些总结吧 ORM 全称 Object Relational ...

  7. 【nginx下对服务器脚本php的支持】

    安装php7     下载地址:https://secure.php.net/downloads.php这里下载的是:wget http://ar2.php.net/distributions/php ...

  8. 几种常用的git命令

    1.合并代码出现冲突,用git status 查看冲突所在的文件 2. clone 指定分支分支的文件夹 git clone -b **** ***; 3.git merge 和 git rebase ...

  9. Hadoop(21)-数据清洗(ELT)简单版

    有一个诸如这样的log日志 去除长度不合法,并且状态码不正确的记录 LogBean package com.nty.elt; /** * author nty * date time 2018-12- ...

  10. python-集合类型

    集合具有唯一性(集合中的元素各不相同),无序性,确定性(集合中的元素是不可改变的,不能是列表,字典以及集合本身) 1.add(self, *args, **kwargs),union(self, *a ...