POJ 1160 Post Office (四边形不等式优化DP)
题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小。
析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村庄用 k 个邮局距离最小,w可以先预处理出来O(n^2),但是这个方程很明显是O(n^3),但是因为是POJ,应该能暴过去。。= =,正解应该是对DP进行优化,很容易看出来,w是满足四边形不等式的,也可以推出来 s 是单调的,可以进行优化。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e16;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 300 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} int dp[35][maxn], w[maxn][maxn], s[35][maxn];
int a[maxn]; int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) scanf("%d", a+i);
for(int i = 1; i <= n; ++i){
w[i][i] = 0;
for(int j = i+1; j <= n; ++j)
w[i][j] = w[i][j-1] + a[j] - a[i+j>>1];
}
memset(dp, INF, sizeof dp);
memset(s, 0, sizeof s);
for(int i = 1; i <= n; ++i) dp[1][i] = w[1][i];
for(int i = 2; i <= m; ++i){
s[i][n+1] = n;
for(int j = n; j >= i; --j)
for(int k = s[i-1][j]; k <= s[i][j+1]; ++k)
if(dp[i][j] > dp[i-1][k] + w[k+1][j]){
dp[i][j] = dp[i-1][k] + w[k+1][j];
s[i][j] = k;
}
}
printf("%d\n", dp[m][n]);
}
return 0;
}
POJ 1160 Post Office (四边形不等式优化DP)的更多相关文章
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- ②SpringBoot之Web综合开发
Spring boot初级教程 :<SpringBoot入门教学篇①>,方便大家快速入门.了解实践Spring boot特性,本文介绍springBoot的web开发 web开发sprin ...
- 用css来写一个背景图片的切换
代码如下: <!DOCTYPE HTML> <htmllang="en-US"> <head> <meta charset="U ...
- FIREDAC的心得
FIREDAC与UNIDAC有些不同 但大体上是相同的 以下是一些随手笔记: FieldCount是当前FDQuery2所在行里面有多少列 一般用FieldList[X]来代表第几列 str:=FDQ ...
- 全文检索引擎Solr系列——Solr核心概念、配置文件
Document Document是Solr索引(动词,indexing)和搜索的最基本单元,它类似于关系数据库表中的一条记录,可以包含一个或多个字段(Field),每个字段包含一个name和文本值. ...
- 1118 Birds in Forest
题意: 思路:并查集模板题. 代码: #include <cstdio> #include <algorithm> using namespace std; ; int fat ...
- 支付宝pc端支付接入PHP实现
引入支付宝接口 放入一个插件库中,方便管理 创建支付类 1.发起支付 public function init() { $order_id = $_REQUEST['order_id']; $orde ...
- DevOps介绍
DevOps 也同样要通过技术工具链完成持续集成.持续交付.用户反馈和系统优化的整合.Elasticbox 整理了 60+ 开源工具与分类,其中包括版本控制&协作开发工具.自动化构建和测试工具 ...
- php各版本编译好的扩展模块下载地址
php各版本[,x86/64 v9/v11/v14 nts/ts]编译好的扩展模块下载地址: https://windows.php.net/downloads/pecl/releases/ ht ...
- MySQL 示例数据库sakila-db的安装
最近在看 “高性能MySql”这本神书,发现上面很多例子采用的官方示例数据库sakila. 官方示例数据库 下载地址 http://dev.mysql.com/doc/index-other.html ...
- log4j配置文件的手动加载与配置初始化
一. 本地项目: 初始化log4j的日志配置,指定到src目录下(建议用2) //1. 本地项目-属性文件配置 PropertyConfigurator.configu ...