题意: 给出m个村庄及其距离,给出n个邮局,要求怎么建n个邮局使代价最小。

析:一般的状态方程很容易写出,dp[i][j] = min{dp[i-1][k] + w[k+1][j]},表示前 j 个村庄用 k 个邮局距离最小,w可以先预处理出来O(n^2),但是这个方程很明显是O(n^3),但是因为是POJ,应该能暴过去。。= =,正解应该是对DP进行优化,很容易看出来,w是满足四边形不等式的,也可以推出来 s 是单调的,可以进行优化。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e16;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 300 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} int dp[35][maxn], w[maxn][maxn], s[35][maxn];
int a[maxn]; int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) scanf("%d", a+i);
for(int i = 1; i <= n; ++i){
w[i][i] = 0;
for(int j = i+1; j <= n; ++j)
w[i][j] = w[i][j-1] + a[j] - a[i+j>>1];
}
memset(dp, INF, sizeof dp);
memset(s, 0, sizeof s);
for(int i = 1; i <= n; ++i) dp[1][i] = w[1][i];
for(int i = 2; i <= m; ++i){
s[i][n+1] = n;
for(int j = n; j >= i; --j)
for(int k = s[i-1][j]; k <= s[i][j+1]; ++k)
if(dp[i][j] > dp[i-1][k] + w[k+1][j]){
dp[i][j] = dp[i-1][k] + w[k+1][j];
s[i][j] = k;
}
}
printf("%d\n", dp[m][n]);
}
return 0;
}

  

POJ 1160 Post Office (四边形不等式优化DP)的更多相关文章

  1. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  2. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  3. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  4. codevs3002石子归并3(四边形不等式优化dp)

    3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm  时间限制: 1 s  空间限制: 256000 KB  题目等级 ...

  5. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  6. POJ 1160 四边形不等式优化DP Post Office

    d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...

  7. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

  8. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  9. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

随机推荐

  1. c&c++ datetime

    时间函数之间的关系 struct tm { int tm_sec; // 代表目前秒数,正常范围0-59,但允许至61秒: int tm_min; // 代表目前分数,范围为0-59. int tm_ ...

  2. 基于SQL调用Com组件来发送邮件

    这个需求是公司有个文控中心,如果有用增删改了文件信息希望可以发邮件通知到有权限的人.当然方式很多. 这里是用数据库作业来完成 JOB+Com,这里用的com组件是Jmail 当然你需要把com组件放到 ...

  3. java求10!的阶乘

    package com.aaa; //求10!的阶乘 public class Cheng { public static void main(String[] args) { int s=1; fo ...

  4. HDFS之五:Hadoop 拒绝远程 9000 端口访问

        最近学习Hadoop 时发现在本机访问 hadoop 9000 端口没有问题,但是远程机器访问 9000端口时不能访问,通过telnet 命令诊断发现发现无法访问端口,经过网上搜索解决方案结合 ...

  5. 杂项-WiFi:JotSpot

    ylbtech-杂项-WiFi:JotSpot JotSpot公司成立于2003年,由曾经创建了搜索引擎Excite的Joe Kraus一手创建,曾获得了来自Mayfield和RedPoint 两家风 ...

  6. 1024 Palindromic Number

    题意: 给出一个数N(N<=10^10),最多可操作K次(K<=100),每次操作为这个数和其反转之后的数相加,若得到的结果为回文数,则输出:若在K次迭代后仍然不是回文数,在输出第K次操作 ...

  7. js 格式化相关的时间

    javascript Date format(js日期格式化) 方法一: // 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s). ...

  8. leetcode454

    public class Solution { public int FourSumCount(int[] A, int[] B, int[] C, int[] D) { var dic = new ...

  9. struts2中s:iterator的使用(2个list嵌套循环)

    <s:iterator value="packagePlateTbls" id="plateTbls"> <tr> <td cla ...

  10. Class.forName和ClassLoader.loadClass区别(转)

    Java中class是如何加载到JVM中的:1.class加载到JVM中有三个步骤    装载:(loading)找到class对应的字节码文件.    连接:(linking)将对应的字节码文件读入 ...