Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树
5 seconds
256 megabytes
standard input
standard output
Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:
- 1 l r x — increase all integers on the segment from l to r by values x;
- 2 l r — find
, where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo109 + 7.
In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.
Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?
The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n,1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.
It's guaranteed that the input will contains at least one query of the second type.
For each query of the second type print the answer modulo 109 + 7.
5 4
1 1 2 1 1
2 1 5
1 2 4 2
2 2 4
2 1 5
5
7
9
Initially, array a is equal to 1, 1, 2, 1, 1.
The answer for the first query of the second type is f(1) + f(1) + f(2) + f(1) + f(1) = 1 + 1 + 1 + 1 + 1 = 5.
After the query 1 2 4 2 array a is equal to 1, 3, 4, 3, 1.
The answer for the second query of the second type is f(3) + f(4) + f(3) = 2 + 3 + 2 = 7.
The answer for the third query of the second type is f(1) + f(3) + f(4) + f(3) + f(1) = 1 + 2 + 3 + 2 + 1 = 9.
题意:f(x)为斐波那契第x项,1是更新l-r的区间f(i+x),2是求区间和;
思路:线段树维护矩阵,将每个f(x)转化为2*2的矩阵,区间更新为乘法;
需要一点小优化;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+,mod=1e9+;
struct is
{
ll a[][];
void setnum(ll aa,ll b,ll c,ll d)
{
a[][]=aa;
a[][]=b;
a[][]=c;
a[][]=d;
}
void reset()
{
for(int i=;i<=;i++)
for(int t=;t<=;t++)
a[i][t]=;
}
};
is add(is a,is b)
{
for(int i=; i<=; i++)
for(int t=; t<=; t++)
a.a[i][t]=(a.a[i][t]+b.a[i][t])%mod;
return a;
}
struct tree
{
is lazy;
is a;
}tree[N<<];
is gg;
is juzhenmul(is a,is b,ll mod)
{
int i,t,j;
is ans;
ans.reset();
for(i=;i<=;i++)
for(t=;t<=;t++)
for(j=;j<=;j++)
{
ans.a[i][t]+=(a.a[i][j]*b.a[j][t]);
ans.a[i][t]%=mod;
}
return ans;
}
is quickpow(is a,ll x,ll mod)
{
is ans;
ans.setnum(,,,);
while(x)
{
if(x&) ans=juzhenmul(ans,a,mod);
a=juzhenmul(a,a,mod);
x>>=;
}
return ans;
}
is getans(is base,ll x,ll mod)
{
return quickpow(base,x-,mod);
}
void pushup(int pos)
{
tree[pos].a=add(tree[pos<<|].a,tree[pos<<].a);
}
void pushdown(int pos)
{
if(tree[pos].lazy.a[][]!=||tree[pos].lazy.a[][]!=||tree[pos].lazy.a[][]!=||tree[pos].lazy.a[][]!=)
{
tree[pos<<].lazy=juzhenmul(tree[pos<<].lazy,tree[pos].lazy,mod);
tree[pos<<|].lazy=juzhenmul(tree[pos<<|].lazy,tree[pos].lazy,mod);
tree[pos<<].a=juzhenmul(tree[pos].lazy,tree[pos<<].a,mod);
tree[pos<<|].a=juzhenmul(tree[pos].lazy,tree[pos<<|].a,mod);
tree[pos].lazy.setnum(,,,);
}
}
void buildtree(int l,int r,int pos)
{
tree[pos].lazy.setnum(,,,);
if(l==r)
{
ll x;
scanf("%lld",&x);
tree[pos].a=getans(gg,x,mod);
return;
}
int mid=(l+r)>>;
buildtree(l,mid,pos<<);
buildtree(mid+,r,pos<<|);
pushup(pos);
}
void update(int L,int R,int l,int r,int pos,is c)
{
if(L<=l&&r<=R)
{
tree[pos].lazy=juzhenmul(c,tree[pos].lazy,mod);
tree[pos].a=juzhenmul(c,tree[pos].a,mod);
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,l,mid,pos<<,c);
if(R>mid)
update(L,R,mid+,r,pos<<|,c);
pushup(pos);
}
ll query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)
return tree[pos].a.a[][];
pushdown(pos);
int mid=(l+r)>>;
ll ans=;
if(L<=mid)
ans+=query(L,R,l,mid,pos<<);
if(R>mid)
ans+=query(L,R,mid+,r,pos<<|);
return ans%mod;
}
int main()
{
gg.setnum(,,,);
int n,m;
scanf("%d%d",&n,&m);
buildtree(,n,);
while(m--)
{
int flag,l,r;
ll c;
scanf("%d%d%d",&flag,&l,&r);
if(flag==)
{
scanf("%lld",&c);
update(l,r,,n,,getans(gg,c+,mod));
}
else
printf("%lld\n",query(l,r,,n,));
}
return ;
}
Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树的更多相关文章
- E. Sasha and Array 矩阵快速幂 + 线段树
E. Sasha and Array 这个题目没有特别难,需要自己仔细想想,一开始我想了一个方法,不对,而且还很复杂,然后lj提示了我一下说矩阵乘,然后再仔细想想就知道怎么写了. 这个就是直接把矩阵放 ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵
E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...
- Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array
题目链接 分析:矩阵快速幂+线段树 斐波那契数列的计算是矩阵快速幂的模板题,这个也没什么很多好解释的,学了矩阵快速幂应该就知道的东西= =这道题比较巧妙的在于需要用线段树来维护矩阵,达到快速查询区间斐 ...
- Codeforces Round #539 (Div. 1) E - Sasha and a Very Easy Test 线段树
如果mod是质数就好做了,但是做除法的时候对于合数mod可能没有逆元.所以就只有存一下mod的每个质因数(最多9个)的幂,和剩下一坨与mod互质的一部分.然后就能做了.有点恶心. CODE #incl ...
- Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)
思路: dfs序其实是很水的东西. 和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...
- Codeforces Round #323 (Div. 2) D 582B Once Again...(快速幂)
A[i][j]表示在循环节下标i开头j结尾的最长不减子序列,这个序列的长度为p,另外一个长度为q的序列对应的矩阵为B[i][j], 将两序列合并,新的序列对应矩阵C[i][j] = max(A[i][ ...
- Codeforces 719E [斐波那契区间操作][矩阵快速幂][线段树区间更新]
/* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求 ...
- Codeforces Round #373 (Div. 1)
Codeforces Round #373 (Div. 1) A. Efim and Strange Grade 题意 给一个长为\(n(n \le 2 \times 10^5)\)的小数,每次可以选 ...
随机推荐
- 《从零开始学Swift》学习笔记(Day 29)——访问级别
Swift 2.0学习笔记(Day 29)——访问级别 原创文章,欢迎转载.转载请注明:关东升的博客 访问级别: Swift提供了3种不同访问级别,对应的访问修饰符为:public.internal和 ...
- 1603 限高二叉排列树(计数DP)
1603 限高二叉排列树 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 作为游戏魔方的编写者和管理员,Bob在很多主存模块中 ...
- EasyNVR支持的摄像机、NVR设备接入类型以及关于国标设备是否支持接入EasyNVR无插件流媒体服务器
背景分析: 随着互联直播的发展,EasyNVR也是顺应时代潮流顺势发展,也是越来越受广大客户的欢迎. 主要是因为EasyNVR可以完美的摆脱网络的限制,可以实现互联网级别的直播分发和录像回看,特别是对 ...
- 关于User的一些注解
@RequiresAuthentication 验证用户是否登录,等同于方法subject.isAuthenticated() 结果为true时. @RequiresUser 验证用户是否被记忆,us ...
- python系列五:Python3列表list
#!usr/bin/python#-*-coding:gbk-*-#列表list'''可以看到a b c 三个是同一id值,当改变当中任一列表元素的值后,三者会同步改变.但d的元素值不会变,改变d的元 ...
- laydate日历控件
var start = { elem: '#start_0', format: 'YYYY-MM-DD', max: laydate.now(-), istime: false, istoday: f ...
- Vue的插值与表达式
正常情况我们在页面取值都是通过 {{ data }}来取值,但是有时候我们就是想输出HTML,而不是将数据解析后的纯文本,这个时候可以使用v-html来绑定数据 <span v-html=&qu ...
- git原理:pack打包
git向磁盘中存储对象使用“松散(loose)”对象格式.比如文件a.txt第一个版本大小是10k,第二个版本向其中添加了一行代码,假如此时文件为10.1k,那么第二个版本会重新产生一个1.1k的文件 ...
- 画图-drawpoint and drawpath
版权声明:本文因海牛宝宝童鞋才疏学浅,可能晦涩难懂,但也是呕心沥血之作,麻烦转载的时候留个申明. https://blog.csdn.net/u012321815/article/details/26 ...
- Node.js的概念与应用
转:http://blog.jobbole.com/100058/?utm_source=blog.jobbole.com&utm_medium=relatedPosts Node.js 是什 ...